Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate, actual apparent

Flow rate. The flow rate from the pump should be accurate, regardless of the system in which the pump is used. This means that the flow rate actually produced by the pump is the same as that dialled up on the front panel, and that this should not be affected by the rest of the HPLC system (for constant flow pumps, at least). The flow rate should be reproducible and practically free of pulsations. Pulsatile flow can limit the sensitivity of HPLC assays, resulting in a rhythmic variation in the apparent refractive index of the mobile phase flowing through the detector, which ultimately manifests itself in the chromatogram as baseline noise. Various means are employed to attempt to eliminate flow pulsation (see section 5.3). [Pg.99]

Caseinate is a mixture of fairly flexible polymers. Most proteins are of globular conformation, and their surface properties are not easy to interpret. The values of t)ls are much higher and tend to increase with the age of the film. It may take a day to obtain a more or less constant value, which is typically 0.1-0.5 N s m 1. However, the surface layer is clearly viscoelastic, and the apparent viscosity obtained will strongly depend on measurement conditions, especially the shear rate. Actually, it cannot always be ruled out that the proteinaceous surface layer is subject to yielding or fracture upon large deformation this would imply that slip occurs in the rheometer, leading to a greatly underestimated viscosity. [Pg.404]

The terms apparent shear rate and apparent viscosity are used because Eq. 6.51 is valid only for Newtonian fluids. Therefore, if the fluid is non-Newtonian, the actual value of the shear rate at the capillary wall will be different. If the fluid behaves as a power law fluid with power law index n, the actual shear rate at the capillary wall is ... [Pg.222]

The basic relationship for the experimental determination of first-order rate constants is the extent of reaction (E.R.)-time profile where E.R. is defined either as ([R]o — [R])/[R]o (decay of reactant concentration) or as [P]/[R]o (evolution of product concentration). With these definitions in mind, we see that the scale on both x and y axes in the two plots in Figure 1.1 are actually apparent E.R. if [A]o is unity. In spectrophotometric kinetic analysis concentrations are not measured and it is necessary to assume that absorbance... [Pg.4]

Bimetallic phase-transfer-catalysis is a process whereby a reaction that occurs using two different metal complexes, does not proceed in the absence of either metal species, or proceeds only at reduced rate. An apparent system of this class has been reported, in which Co2(CO)g and [RhCl(l,5-hexadiene)]2 mutually increased their reactivity when used as catalysts for the conversion of nitrobenzene to aniline in a biphasic system (benzene, aqueous NaOH, dodecyltrimethylammonium chloride) in a carbon monoxide atmosphere [73]. However, another member of the same research group later showed [74] that the apparent bimetallic promotion was due to the fact that the alkylammonium salt used as a phase-transfer agent actually inhibited the activity of the active rhodium complex (apparently a cluster, which is active in the absence of both the alkylammonium salt and the cobalt compound) by rendering it insoluble. The added Co2(CO)g reacts with the alkylammonium salt to generate... [Pg.154]

Templeton obtained data of the following type for the rate of displacement of water in a 30-/im capillary by oil (n-cetane) (the capillary having previously been wet by water). The capillary was 10 cm long, and the driving pressure was 45 cm of water. When the meniscus was 2 cm from the oil end of the capillary, the velocity of motion of the meniscus was 3.6 x 10 cm/sec, and when the meniscus was 8 cm from the oil end, its velocity was 1 x 10 cm/sec. Water wet the capillary, and the water-oil interfacial tension was 30 dyn/cm. Calculate the apparent viscosities of the oil and the water. Assuming that both come out to be 0.9 of the actual bulk viscosities, calculate the thickness of the stagnant annular film of liquid in the capillary. [Pg.489]

The apparent activation energy is then less than the actual one for the surface reaction per se by the heat of adsorption. Most of the algebraic forms cited are complicated by having a composite denominator, itself temperature dependent, which must be allowed for in obtaining k from the experimental data. However, Eq. XVIII-47 would apply directly to the low-pressure limiting form of Eq. XVIII-38. Another limiting form of interest results if one product dominates the adsorption so that the rate law becomes... [Pg.726]

In discussing Fig. 4.1 we noted that the apparent location of Tg is dependent on the time allowed for the specific volume measurements. Volume contractions occur for a long time below Tg The lower the temperature, the longer it takes to reach an equilibrium volume. It is the equilibrium volume which should be used in the representation summarized by Fig. 4.15. In actual practice, what is often done is to allow a convenient and standardized time between changing the temperature and reading the volume. Instead of directly tackling the rate of collapse of free volume, we shall approach this subject empirically, using a property which we have previously described in terms of free volume, namely, viscosity. [Pg.251]

A more difficult criterion to meet with flow markers is that the polymer samples not contain interferents that coelute with or very near the flow marker and either affect its retention time or the ability of the analyst to reproducibly identify the retention time of the peak. Water is a ubiquitous problem in nonaqueous GPC and, when using a refractive index detector, it can cause a variable magnitude, negative area peak that may coelute with certain choices of totally permeated flow markers. This variable area negative peak may alter the apparent position of the flow marker when the flow rate has actually been invariant, thereby causing the user to falsely adjust data to compensate for the flow error. Similar problems can occur with the elution of positive peaks that are not exactly identical in elution to the totally permeated flow marker. Species that often contribute to these problems are residual monomer, reactants, surfactants, by-products, or buffers from the synthesis of the polymer. [Pg.549]

This further assumption concerning velocity and the volumetric rate of flow restricts flow to the pores and not the full area. Therefore, v is an apparent velocity. The actual velocity, assuming a uniform medium, is... [Pg.259]

The above considerations show that the rate of a corrosion reaction is dependent on both the thermodynamic parameter and the kinetic parameters rjj and rjj. It is also apparent that (q) the potential actually measured when corrosion reaction occurs on a metal surface is mixed, compromise or corrosion potential whose magnitude depends on E, and on the Ej, -I and Ej, -I relationships, and (b) direct measurement of 7 is not possible when the electrodes are inseparable. [Pg.88]

Soil resistivity The role of soil in the electrical circuitry of corrosion is now apparent. Thus the conductivity of the soil represents an important parameter. Soil resistivity has probably been more widely used than any other test procedure. Opinions of experts vary somewhat as to the actual values in terms of ohm centimetres which relate to metal-loss rates. The extended study of the US Bureau of Standards presents a mass of data with soil-resistivity values given. A weakness of the resistivity procedure is that it neither indicates variations in aeration and pH of the soil, nor microbial activity in terms of coating deterioration or corrosion under anaerobic conditions. Furthermore, as shown by Costanzo rainfall fluctuations markedly affect readings. Despite its short comings, however, this procedure represents a valuable survey method. Scott points out the value of multiple data and the statistical nature of the resistivity readings as related to corrosion rates (see also Chapter 10). [Pg.387]

When the temperature of the analyzed sample is increased continuously and in a known way, the experimental data on desorption can serve to estimate the apparent values of parameters characteristic for the desorption process. To this end, the most simple Arrhenius model for activated processes is usually used, with obvious modifications due to the planar nature of the desorption process. Sometimes, more refined models accounting for the surface mobility of adsorbed species or other specific points are applied. The Arrhenius model is to a large extent merely formal and involves three effective (apparent) parameters the activation energy of desorption, the preexponential factor, and the order of the rate-determining step in desorption. As will be dealt with in Section II. B, the experimental arrangement is usually such that the primary records reproduce essentially either the desorbed amount or the actual rate of desorption. After due correction, the output readings are converted into a desorption curve which may represent either the dependence of the desorbed amount on the temperature or, preferably, the dependence of the desorption rate on the temperature. In principle, there are two approaches to the treatment of the desorption curves. [Pg.346]

Even if the peak behavior fits well for a given apparent desorption order, the real kinetic situation may be a different one. As a rate controlling step in a second-order desorption, random recombination of two particles is assumed most frequently. However, should the desorption proceed via a nonrandom recombination of neighboring particle pairs into an ordered structure, the resulting apparent first-order desorption kinetics is claimed to be possible (36). The term pseudo-first-order kinetics is used in this instance. Vice versa, second-order kinetics of desorption can appear for a nondissociative adsorption, if the existence of a dimer complex is necessary before the actual desorption step can take place (99). A possibility of switching between the apparent second-order and first-order kinetics by changing the surface coverage has also been claimed (60, 99, 100). [Pg.376]

If no concentration of the educt is given the standard exchange current density y oo is stated. Values of)t are printed in italics values of the apparent rate constant k pp are printed in parentheses in italics. For electrode potentials where the latter rate constant was actually determined the reader is referred to the original literature. [Pg.375]

ZnO is, apparently, a very suitable support for the copper particles. Evidence exists, however, that its role does not have to be limited to that of a support only. Nakamura et al. have studied the influence of Zn on methanol synthesis on copper crystals by depositing Zn on the surface [J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito, and T. Fujitani, J. Catal. 160 (1996) 65]. They found that the rate was enhanced by a factor of six (see Fig. 8.14), suggesting that Zn atoms also act as a chemical promoter. Whether some of the ZnO in the real catalyst is actually reduced to such a degree that it can alloy into the copper particles and segregate to the surface, as suggested by Nakamura, is still a controversial topic. [Pg.319]

The BaO is produced in the form of very small particles of nearly atomic proportions which react immediately to form the silicate. Actually, the rate of reaction is proportional to the number of nuclei produced per unit vdlume. A nucleus is a point where atoms or ions have reacted and begun the formation of the product structure. In the case of the BaO reaction, the number of nuclei formed per unit of time is small and formation of the structure is diffusion limited. In the case of BaCOa decomposition, the atomic-proportioned BaO reacts nearly as fast as it is formed so that the number of nuclei per unit volume is enormously increased. It is thus apparent that if we wish to increase solid state reaction rates, one way to do so is to use a decomposition reaction to supply the reacting species, we will further address this type of reaction later on in our discussion. [Pg.137]

A superficially related dependence of on the medium has been observed by Norrish and Smith working with methyl methacrylate, and by Burnett and Melville with vinyl acetate. Rates in poor solvents are high, and determination of by the rotating sector method reveals what appears to be a decrease in kt in the poor solvents. This apparent decrease in kt accounts for the increased rate of polymerization. Actually, precipitation of the polymer seems to be responsible for the effect. The growing radicals become imbedded in precipitated droplets, presumably of very small size. The termination reaction is suppressed owing to isolation of the chain radical in one droplet from that in another. This gel effect is fairly common in systems yield-... [Pg.160]

The increase in iV, and therefore in the rate as well, with initial soap concentration is thus explained. Quantitative results agree approximately with the predicted three-fifths power dependence. The prediction of an increase in polymerization rate with also has been confirmed by experiments at variable initiator concentrations.t Most important of all, the actual number of particles N calculated from Eq. (35) agrees within a factor of two with that observed. It is thus apparent that the theory of emulsion polymerization developed by Harkins and by Smith and Ewart has enjoyed spectacular success in accounting for the unique features of the emulsion polymerization process. [Pg.214]


See other pages where Rate, actual apparent is mentioned: [Pg.113]    [Pg.786]    [Pg.151]    [Pg.151]    [Pg.202]    [Pg.127]    [Pg.373]    [Pg.6]    [Pg.546]    [Pg.528]    [Pg.378]    [Pg.72]    [Pg.752]    [Pg.148]    [Pg.741]    [Pg.85]    [Pg.35]    [Pg.524]    [Pg.122]    [Pg.1296]    [Pg.590]    [Pg.40]    [Pg.52]    [Pg.8]    [Pg.212]    [Pg.73]    [Pg.60]    [Pg.362]    [Pg.28]    [Pg.216]    [Pg.300]   
See also in sourсe #XX -- [ Pg.86 , Pg.139 , Pg.297 , Pg.380 ]




SEARCH



Actual

Actuality

Apparent rate

Rate, actual

© 2024 chempedia.info