Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectroscopy limitations

Raman microscopy is more developed than its IR counterpart. There are several reasons for this. First, the diffraction limit for focusing a visible beam is about 10 times smaller than an IR beam. Second, Raman spectroscopy can be done in a backscattering geometry, whereas IR is best done in transmission. A microscope is most easily adapted to a backscattermg geometry, but it is possible to do it in transmission. [Pg.1174]

The third important source for infonnation on modem Raman spectroscopy are the books cataloguing the proceedings of the International Conference on Raman Spectroscopy (ICORS) [37]. ICORS is held every two years at various international locations and feahires hundreds of contributions from leading research groups covering all areas of Raman spectroscopy. Although the published presentations are quite limited in lengdi, they each contain references to the more substantial works and collectively provide an excellent overview of current trends m Raman spectroscopy. A snapshot or brief sununary of the 1998 conference appears at the end of this chapter. [Pg.1196]

Nonnal spontaneous Raman scahering suffers from lack of frequency precision and thus good spectral subtractions are not possible. Another limitation to this technique is that high resolution experiments are often difficult to perfomi [39]. These shortcomings have been circumvented by the development of Fourier transfomi (FT) Raman spectroscopy [40]. FT Raman spectroscopy employs a long wavelength laser to achieve viable interferometry. [Pg.1199]

Plenary 15. B Scluader et al, e-mail address beriilrard.scluader uni-essen.de (NIR-FTRS). A review of the use of Raman spectroscopy in medical diagnostics. Its possibilities, limitations and expectations. Emphasizes the need for a library of reference spectra and the applications of advanced analysis (chemometry) for comparing patient/library spectra. [Pg.1218]

Figure Bl.22.6. Raman spectra in the C-H stretching region from 2-butanol (left frame) and 2-butanethiol (right), each either as bulk liquid (top traces) or adsorbed on a rough silver electrode surface (bottom). An analysis of the relative intensities of the different vibrational modes led to tire proposed adsorption structures depicted in the corresponding panels [53], This example illustrates the usefiilness of Raman spectroscopy for the detennination of adsorption geometries, but also points to its main limitation, namely the need to use rough silver surfaces to achieve adequate signal-to-noise levels. Figure Bl.22.6. Raman spectra in the C-H stretching region from 2-butanol (left frame) and 2-butanethiol (right), each either as bulk liquid (top traces) or adsorbed on a rough silver electrode surface (bottom). An analysis of the relative intensities of the different vibrational modes led to tire proposed adsorption structures depicted in the corresponding panels [53], This example illustrates the usefiilness of Raman spectroscopy for the detennination of adsorption geometries, but also points to its main limitation, namely the need to use rough silver surfaces to achieve adequate signal-to-noise levels.
The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

Sample preparation is straightforward for a scattering process such as Raman spectroscopy. Sample containers can be of glass or quartz, which are weak Raman scatterers, and aqueous solutions pose no problems. Raman microprobes have a spatial resolution of - 1 //m, much better than the diffraction limit imposed on ir microscopes (213). Eiber-optic probes can be used in process monitoring (214). [Pg.318]

Special Raman Spectroscopies. The weakness of Raman scattering results typically in the conversion of no more than 10 of the incident laser photons into a usable signal, limiting the sensitivity of conventional spontaneous Raman spectroscopy. This situation can be improved using alternative approaches (8,215,216). [Pg.318]

The obvious application of microfocus Raman spectroscopy is the measurement of individual grains, inclusions, and grain boundary regions in polycrystalline materials. No special surface preparation is needed. Data can be obtained from fresh fracture surfeces, cut and polished surfaces, or natural surfeces. It is also possible to investigate growth zones and phase separated regions if these occur at a scale larger than the 1-2 pm optical focus limitation. [Pg.438]

Pressure-induced phase transitions in the titanium dioxide system provide an understanding of crystal structure and mineral stability in planets interior and thus are of major geophysical interest. Moderate pressures transform either of the three stable polymorphs into the a-Pb02 (columbite)-type structure, while further pressure increase creates the monoclinic baddeleyite-type structure. Recent high-pressure studies indicate that columbite can be formed only within a limited range of pressures/temperatures, although it is a metastable phase that can be preserved unchanged for years after pressure release Combined Raman spectroscopy and X-ray diffraction studies 6-8,10 ave established that rutile transforms to columbite structure at 10 GPa, while anatase and brookite transform to columbite at approximately 4-5 GPa. [Pg.19]

At higher pressures only Raman spectroscopy data are available. Because the rotational structure is smoothed, either quantum theory or classical theory may be used. At a mixture pressure above 10 atm the spectra of CO and N2 obtained in [230] were well described classically (Fig. 5.11). For the lowest densities (10-15 amagat) the band contours have a characteristic asymmetric shape. The asymmetry disappears at higher pressures when the contour is sufficiently narrowed. The decrease of width with 1/tj measured in [230] by NMR is closer to the strong collision model in the case of CO and to the weak collision model in the case of N2. This conclusion was confirmed in [215] by presenting the results in universal coordinates of Fig. 5.12. It is also seen that both systems are still far away from the fast modulation (perturbation theory) limit where the upper and lower borders established by alternative models merge into a universal curve independent of collision strength. [Pg.182]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

A limit of ca. 1.8% of Ti incorporation into the framework of the S-1 silicalite has been calculated by titration using Raman spectroscopy [14] or using voltametric measurements... [Pg.612]

In most work on electrochemical systems, use is made of two effects that greatly enhance the Raman signals. One is resonance Raman spectroscopy (RRS), wherein the excitation wavelength corresponds to an electronic transition in an adsorbed molecule on an electrode surface. The other effect is surface-enhanced Raman spectroscopy (SERS), which occurs on certain surfaces, such as electrochemically roughened silver and gold. This effect, discovered by Fleischmann et al. (1974), yields enhancements of 10 to 10 . The vast majority of publications on Raman studies of electrochemical systems use SERS. The limitations of SERS are that it occurs on only a few metals and the mechanism of the enhancement is not understood. There is speculation that only a small part of the surface is involved in the effect. There is a very good review of SERS (Pemberton, 1991). [Pg.499]

Similarly, the first-order expansion of the p° and a of Eq. (5.1) is, respectively, responsible for IR absorption and Raman scattering. According to the parity, one can easily understand that selection mles for hyper-Raman scattering are rather similar to those for IR [17,18]. Moreover, some of the silent modes, which are IR- and Raman-inactive vibrational modes, can be allowed in hyper-Raman scattering because of the nonlinearity. Incidentally, hyper-Raman-active modes and Raman-active modes are mutually exclusive in centrosymmetric molecules. Similar to Raman spectroscopy, hyper-Raman spectroscopy is feasible by visible excitation. Therefore, hyper-Raman spectroscopy can, in principle, be used as an alternative for IR spectroscopy, especially in IR-opaque media such as an aqueous solution [103]. Moreover, its spatial resolution, caused by the diffraction limit, is expected to be much better than IR microscopy. [Pg.94]

Principles and Characteristics The prospects of Raman analysis for structural information depend upon many factors, including sample scattering strength, concentration, stability, fluorescence and background scattering/fluorescence from the TLC substrate. Conventional dispersive Raman spectroscopy has been considered as a tool for in situ analysis of TLC spots, since most adsorbents give weak Raman spectra and minimal interference with the spectra of the adsorbed species. Usually both silica and cellulose plates yield good-quality conventional Raman spectra, as opposed to polyamide plates. Detection limits for TLC fractions... [Pg.535]

The sensitivity limitations of TLC-FT-Raman spectroscopy may be overcome by applying the SERS effect [782]. Unlike infrared, a major gain in Raman signal can be achieved by utilising surface activation and/or resonance effects. Surface-enhanced Raman (SER) spectra can be observed for compounds adsorbed on (rough) metahic surfaces, usually silver or gold colloids [783,784], while resonance Raman (RR) spectra... [Pg.536]

Raman spectroscopy has enjoyed a dramatic improvement during the last few years the interference by fluorescence of impurities is virtually eliminated. Up-to-date near-infrared Raman spectrometers now meet most demands for a modern analytical instrument concerning applicability, analytical information and convenience. In spite of its potential abilities, Raman spectroscopy has until recently not been extensively used for real-life polymer/additive-related problem solving, but does hold promise. Resonance Raman spectroscopy exhibits very high selectivity. Further improvements in spectropho-tometric measurement detection limits are also closely related to advances in laser technology. Apart from Raman spectroscopy, areas in which the laser is proving indispensable include molecular and fluorescence spectroscopy. The major use of lasers in analytical atomic... [Pg.734]


See other pages where Raman spectroscopy limitations is mentioned: [Pg.2451]    [Pg.210]    [Pg.148]    [Pg.148]    [Pg.52]    [Pg.442]    [Pg.256]    [Pg.398]    [Pg.181]    [Pg.184]    [Pg.97]    [Pg.136]    [Pg.128]    [Pg.301]    [Pg.536]    [Pg.639]    [Pg.50]    [Pg.195]    [Pg.81]    [Pg.97]    [Pg.100]    [Pg.134]    [Pg.140]    [Pg.551]    [Pg.677]    [Pg.677]    [Pg.286]    [Pg.299]    [Pg.118]    [Pg.239]    [Pg.51]   
See also in sourсe #XX -- [ Pg.30 , Pg.540 ]

See also in sourсe #XX -- [ Pg.540 ]




SEARCH



Spectroscopy limitations

Spectroscopy limited

© 2024 chempedia.info