Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman spectra Fourier transform

Two NR samples (cured and uncured) were studied. In all studies, the samples were stretched to 500% elongation. The Fourier-transform Raman spectrum of NR is presented as a function of time of cold soaking at -25C and of strain with respect to laser polarisation. Under both sets of conditions, changes occur in the spectra that can be attributed to crystallisation. Difference spectra showing only those bands due to crystallisation (i.e. spectra of crystalline NR) are presented, which allows the crystallisation process to be discussed with respect to the conditions under which crystallites are formed. A combination of Fourier-transform Raman and Fourier-transform IR depolarisation spectra was used to deduce preliminary assignments for some of the vibrational bands of natural rubber. 40 refs. [Pg.93]

As mentioned, we also carried out IR studies (a fast vibrational spectroscopy) early in our work on carbocations. In our studies of the norbornyl cation we obtained Raman spectra as well, although at the time it was not possible to theoretically calculate the spectra. Comparison with model compounds (the 2-norbornyl system and nortri-cyclane, respectively) indicated the symmetrical, bridged nature of the ion. In recent years, Sunko and Schleyer were able, using the since-developed Fourier transform-infrared (FT-IR) method, to obtain the spectrum of the norbornyl cation and to compare it with the theoretically calculated one. Again, it was rewarding that their data were in excellent accord with our earlier work. [Pg.143]

Ifourth(fd, 2 Q) was multiplied with a window function and then converted to a frequency-domain spectrum via Fourier transformation. The window function determined the wavenumber resolution of the transformed spectrum. Figure 6.3c presents the spectrum transformed with a resolution of 6cm as the fwhm. Negative, symmetrically shaped bands are present at 534, 558, 594, 620, and 683 cm in the real part, together with dispersive shaped bands in the imaginary part at the corresponding wavenumbers. The band shapes indicate the phase of the fourth-order field c() to be n. Cosine-like coherence was generated in the five vibrational modes by an impulsive stimulated Raman transition resonant to an electronic excitation. [Pg.108]

Fig. 16. Effect of soaking TS-1 with water on the XANES (a) and UV-Raman (b) spectra dried TS-1 (solid line) soaked TS-1 (dotted line). The inset in part (a) reports the U-weighted, phase-uncorrected Fourier transforms of the corresponding EXAFS spectrum [Reprinted from Ricchiardi et al. (41) with permission. Copyright (2001) American Chemical Society]. Fig. 16. Effect of soaking TS-1 with water on the XANES (a) and UV-Raman (b) spectra dried TS-1 (solid line) soaked TS-1 (dotted line). The inset in part (a) reports the U-weighted, phase-uncorrected Fourier transforms of the corresponding EXAFS spectrum [Reprinted from Ricchiardi et al. (41) with permission. Copyright (2001) American Chemical Society].
Figure 4.9 FTRS spectrum of mammalian ivory. Letters show regions of the spectrum which were quantified to discriminate between ivory from different species. Reprinted from Analytica Chimica Acta 427, Brody, R. H., Edwards, H. G. M., and Pollard, A. M., Chemometric methods applied to the differentiation of Fourier-transform Raman spectra of ivories , pp. 223-32, copyright 2001, with permission from Elsevier. Figure 4.9 FTRS spectrum of mammalian ivory. Letters show regions of the spectrum which were quantified to discriminate between ivory from different species. Reprinted from Analytica Chimica Acta 427, Brody, R. H., Edwards, H. G. M., and Pollard, A. M., Chemometric methods applied to the differentiation of Fourier-transform Raman spectra of ivories , pp. 223-32, copyright 2001, with permission from Elsevier.
However, the high frequency of the laser irradiation in the visible region may lead to photochemical reactions in the laser focus. Besides, fluorescence can often cover the whole Raman spectrum. Such problems can be avoided by using an excitation wavelength in the near-infrared (NIR) region, e.g. with an Nd YAG laser operating at 1064 nm. Deficits arising from the v dependence of the Raman intensity and the lower sensitivity of NIR detectors are compensated by the Fourier-Transform (IT) technique, which is widespread in IR spectroscopy . ... [Pg.228]

The previous sections have dealt primarily with infrared absorption spectra, although the conclusions can in general be applied to other types of spectra. Here additional uses of deconvolution will be demonstrated. In the first example, a Fourier transform spectrum is simulated and several attempts to deconvolve this spectrum show limited success. In the second example, pressure-broadening effects in an infrared absorption spectrum and a Raman spectrum are simulated. An attempt at removing these effects by deconvolution shows some promise. [Pg.211]

We conclude this chapter by presenting several examples of deconvolution of real data. Most of these examples represent deconvolutions of data that were used as part of a spectral analysis rather than generated as deconvolution examples or tests. The examples include high-resolution grating spectra, tunable-diode-laser (TDL) spectra, a Fourier transform infrared spectrum (FTIR), laser Raman spectra, and a high-resolution y-ray spectrum. [Pg.215]

This expression for the complete overlap is Fourier transformed to give the electronic emission spectrum. In order to carry out the calculation it is necessary to know the frequencies and the displacements for all of the displaced normal modes. In addition, the energy difference between the minima of the two potential surfaces E0 and the damping r must be known. As will be discussed below, the frequencies and displacements can be experimentally determined from pre-resonance Raman spectroscopy, and the energy difference between the ground and excited states and the damping can be obtained from the electronic absorption spectrum and/or emission spectrum. [Pg.43]

Sampling in surface-enhanced Raman and infrared spectroscopy is intimately linked to the optical enhancement induced by arrays and fractals of hot metal particles, primarily of silver and gold. The key to both techniques is preparation of the metal particles either in a suspension or as architectures on the surface of substrates. We will therefore detail the preparation and self-assembly methods used to obtain films, sols, and arrayed architectures coupled with the methods of adsorbing the species of interest on them to obtain optimal enhancement of the Raman and infrared signatures. Surface-enhanced Raman spectroscopy (SERS) has been more widely used and studied because of the relative ease of the sampling process and the ready availability of lasers in the visible range of the optical spectrum. Surface-enhanced infrared spectroscopy (SEIRA) using attenuated total reflection coupled to Fourier transform infrared spectroscopy, on the other hand, is an attractive alternative to SERS but has yet to be widely applied in analytical chemistry. [Pg.413]

Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in... Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in...
Fig. 1.19. Quenching of the coherent vibrational oscillations of MDMO-PPV upon photoinduced charge transfer. The AT/T dynamics for pure MDMO-PPV (continuous line) and for MDMO-PPV/PCBM (1 3 wt. ratio) (dashed line), excited by a sub-10-fs pulse, was recorded at the probe wavelength of 610 nm. The inset shows the Fourier transform of the oscillatory component of the MDMO-PPV signal, the nonresonant Raman spectrum of MDMO-PPV (excitation 1064 nm) and the resonant Raman spectrum of an MDMO-PPV/PCBM sample (excitation 457 nm). For the resonant Raman spectrum of MDMO-PPV, it was necessary to quench the strong background luminescence by adding PCBM... Fig. 1.19. Quenching of the coherent vibrational oscillations of MDMO-PPV upon photoinduced charge transfer. The AT/T dynamics for pure MDMO-PPV (continuous line) and for MDMO-PPV/PCBM (1 3 wt. ratio) (dashed line), excited by a sub-10-fs pulse, was recorded at the probe wavelength of 610 nm. The inset shows the Fourier transform of the oscillatory component of the MDMO-PPV signal, the nonresonant Raman spectrum of MDMO-PPV (excitation 1064 nm) and the resonant Raman spectrum of an MDMO-PPV/PCBM sample (excitation 457 nm). For the resonant Raman spectrum of MDMO-PPV, it was necessary to quench the strong background luminescence by adding PCBM...
Fourier-Transform Infrared (FTIR) spectroscopy as well as Raman spectroscopy are well established as methods for structural analysis of compounds in solution or when adsorbed to surfaces or in any other state. Analysis of the spectra provides information of qualitative as well as of quantitative nature. Very recent developments, FTIR imaging spectroscopy as well as Raman mapping spectroscopy, provide important information leading to the development of novel materials. If applied under optical near-field conditions, these new technologies combine lateral resolution down to the size of nanoparticles with the high chemical selectivity of a FTIR or Raman spectrum. These techniques now help us obtain information on molecular order and molecular orientation and conformation [1],... [Pg.15]

Infrared spectroscopy is an important technique for studying acidity. Acidic OH groups can be studied directly. Probe molecules such as pyridine may be used to study both Bronsted and Lewis acidity since two forms of adsorbed probes are easily distinguished by their infrared spectra. Quantitative infrared spectroscopy may be performed by measuring the spectrum of acidic OH or probes adsorbed on thin, self-supporting wafers of the acidic solid. Other spectroscopic methods which may provide information in specific cases include Fourier Transform Raman spectroscopy, electron spin resonance spectroscopy, ultraviolet spectroscopy, and nuclear magnetic resonance spectroscopy. [Pg.555]

To provide an example of the two-dimensional response from a system containing well-defined intramolecular vibrations, we will use simulations based on the polarized one-dimensional Raman spectrum of CCI4. Due to the continuous distribution of frequencies in the intermolecular region of the spectrum, there was no obvious advantage to presenting the simulated responses of the previous section in the frequency domain. However, for well-defined intramolecular vibrations the frequency domain tends to provide a clearer presentation of the responses. Therefore, in this section we will present the simulations as Fourier transformations of the time domain responses. Figure 4 shows the Fourier transformed one-dimensional Raman spectrum of CCI4. The spectrum contains three intramolecular vibrational modes — v2 at 218 cm, v4 at 314 cm, and vi at 460 cm 1 — and a broad contribution from intermolecular motions peaked around 40 cm-1. We have simulated these modes with three underdamped and one overdamped Brownian oscillators, and the simulation is shown over the data in Fig. 4. [Pg.464]

An alternate approach is to perform coherent Raman spectroscopy in the time domain rather than in the frequency domain. In this case, a single laser that produces short pulses with sufficient bandwidth to excite all of the Raman modes of interest is employed. One pulse or one pair of time-coincident pulses is used to initiate coherent motion of the intermolecular modes. The time dependence of this coherence is then monitored by another laser pulse, whose timing can be varied to map out the Raman free-induction decay (FID). It should be stressed at this point that the information contained in the Raman FID is identical to that in a low-frequency Raman spectrum and that the two types of data can be interconverted by a straightforward Fourier-transform procedure (12-14). Thus, whether a frequency-domain or a time-domain coherent Raman technique should be employed to study a particular system depends only on practical experimental considerations. [Pg.485]

Figure 3. Infrared and Raman spectra of [Nf(n-Bu)4]2 Ni[S2C2(CN)2]2 showing key vibrational assignments for the Ni[S2C2lCN)2 2 2 anion. Raman spectrum obtained using 647-nm excitation for a sample prepared as a KBr disk attached to a cold finger at 17 K. The Fourier transform IR (FTIR) spectra obtained at room temperature as a KBr disk in the 700 2100-cm 1 region and as a Csl disk in the 150-500-cm 1 region. Figure 3. Infrared and Raman spectra of [Nf(n-Bu)4]2 Ni[S2C2(CN)2]2 showing key vibrational assignments for the Ni[S2C2lCN)2 2 2 anion. Raman spectrum obtained using 647-nm excitation for a sample prepared as a KBr disk attached to a cold finger at 17 K. The Fourier transform IR (FTIR) spectra obtained at room temperature as a KBr disk in the 700 2100-cm 1 region and as a Csl disk in the 150-500-cm 1 region.
There is a real chance of a breakthrough of Raman spectroscopy in routine analytics. Excitation of Raman spectra by near-infrared radiation and recording with interferometers, followed by the Fourier transformation of the interferogram into a spectrum -the so-called NIR-FT-Raman technique - has made it possible to obtain Raman spectra of most samples uninhibited by fluorescence. In addition, the introduction of dispersive spectrometers with multi-channel detectors and the development of several varieties of Raman spectroscopy has made it possible to combine infrared and Raman spectroscopy whenever this appears to be advantageous. [Pg.4]

Photo-ions are then detected as a function of interferometer delay. The result is an in-terferogram that upon Fourier transformation yields a Raman spectrum whose resolution does not depend on the bandwidths of the Raman excitation sources but, instead, on the delay range of the interferometer scanned in the experiment. Mass-selective IDSRS and FT-IDSRS have been employed in a number of studies, including one of the benzene dimer (Henson et al., 1991). For examples of IDSRS spectra see Sec. 6.1.4.5. [Pg.188]


See other pages where Raman spectra Fourier transform is mentioned: [Pg.218]    [Pg.59]    [Pg.108]    [Pg.58]    [Pg.257]    [Pg.246]    [Pg.10]    [Pg.109]    [Pg.110]    [Pg.1014]    [Pg.70]    [Pg.367]    [Pg.40]    [Pg.277]    [Pg.145]    [Pg.159]    [Pg.65]    [Pg.211]    [Pg.118]    [Pg.263]    [Pg.159]    [Pg.84]    [Pg.109]    [Pg.25]    [Pg.313]    [Pg.21]    [Pg.3]    [Pg.245]    [Pg.560]    [Pg.187]   
See also in sourсe #XX -- [ Pg.123 ]

See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Fourier spectra

Fourier transform Raman

© 2024 chempedia.info