Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical surface reaction

While metallic solids are deposited by reactions that involve metallic intermediates and ionic solids result from ionic reactions, the solids with covalent bonds grow by means of radical surface reactions. Examples of such materials are diamond, amorphous diamond-like carbon, silicon, and silicon carbide. Diamond and diamond-like carbon can be deposited if hydrocarbon and hydrogen radicals are available at the growing surface. Silicon carbide and boron nitride growth has also been modeled in terms of radical reactions at the surface. [Pg.225]

Like most other engineering thermoplastics, acetal resins are susceptible to photooxidation by oxidative radical chain reactions. Carbon—hydrogen bonds in the methylene groups are principal sites for initial attack. Photooxidative degradation is typically first manifested as chalking on the surfaces of parts. [Pg.57]

Modem real time instmmental methods permit analyses of unstable transient species and the free-radical intermediates as well. These methods have gready expanded the scope and power of VPO studies, but important basic questions remain unresolved. Another complication is the role of surface. Peroxide decompositions and radical termination reactions can occur on a surface so that, depending on circumstances, surfaces can have either an inhibiting or accelerating effect. Each surface has varying amounts of adventitious contaminants and also accumulates deposits during reaction. Thus no two surfaces are exactly alike and each changes with time. [Pg.338]

Pulse radiolysis results (74) have led other workers to conclude that adsorbed OH radicals (surface trapped holes) are the principal oxidants, whereas free hydroxyl radicals probably play a minor role, if any. Because the OH radical reacts with HO2 at a diffusion controlled rate, the reverse reaction, that is desorption of OH to the solution, seems highly unlikely. The surface trapped hole, as defined by equation 18, accounts for most of the observations which had previously led to the suggestion of OH radical oxidation. The formation of H2O2 and the observations of hydroxylated intermediate products could all occur via... [Pg.405]

The free-radical chain reaction may also be terminated by coupling of two carbon-radical species. As solvent carbon tetrachloride is commonly used, where the A-bromosuccinimide is badly soluble. Progress of reaction is then indicated by the decrease of the amount of precipitated NBS and the formation of the succinimide that floats on the surface of the organic liquid layer. [Pg.300]

For the first assumption, the value of Kw for the shift appears to be too high. It must be this high because it is necessary to make C02 appear while both C02 and CO are being consumed rapidly by methanation. The data may be tested to see if the indicated rate appears unreasonable from the standpoint of mass transfer to the gross catalyst surface. Regardless of the rate of diffusion in catalyst pores or the surface reaction rate, it is unlikely that the reaction can proceed more rapidly than material can reach the gross pill surface unless the reaction is a homogeneous one that is catalyzed by free radicals strewn from the catalyst into the gas stream. [Pg.77]

Chidsey and coworkers made pioneering works in preparing covalently bonded monolayer films on silicon surfaces by the radical-initiated reaction of 1-alkenes with the H-Si(lll) surfaces. Reactions were carried out in neat deoxygenated alkenes using thermal decomposition of diacyl peroxides as the... [Pg.164]

X = CO2R or CN). Theoretical calculation at B3LYP/6-31G //HF/STO-3G level showed that the Si-H bond dissociation energies of H-Si(l 11) and (MesSifsSi-H are very similar, which further justifies the use of the well-established radical-based reactivity of (MesSifsSiH as a model for surface reactions. [Pg.167]

Scheme 22 Mechanism of radical chain reactions of the growth of styrene line along the edge of a dimer (left side) and of the growth of allyl mercaptan line across the dimer rows (right side) of a H-Si(l 0 0)-2 x 1 surface. Scheme 22 Mechanism of radical chain reactions of the growth of styrene line along the edge of a dimer (left side) and of the growth of allyl mercaptan line across the dimer rows (right side) of a H-Si(l 0 0)-2 x 1 surface.
The species R—X and Mg " are radical ions." The subscript s is meant to indicate that the species so marked are bound to the surface of the magnesium. Its is known that this is a surface reaction." It has been suggested that some of the R-radicals diffuse from the magnesium surface into the solution and then return to the surface to react with the XMg. There is evidence both for" and against" this suggestion. Another proposal is that the fourth step is not the one shown here, but... [Pg.806]

The barrier for dissociation at the surface is much lower than that for dissociation in the gas phase, which for N2 would require about 9.8 eV (945 kJ mol ) and would lead to two free N radicals. The surface reaction offers an energetically much more... [Pg.255]

The plasma-wall interaction of the neutral particles is described by a so-called sticking model [136, 137]. In this model only the radicals react with the surface, while nonradical neutrals (H2, SiHa, and Si H2 +2) are reflected into the discharge. The surface reaction and sticking probability of each radical must be specified. The nature (material, roughness) and the temperature of the surface will influence the surface reaction probabilities. Perrin et al. [136] and Matsuda et al. [137] have shown that the surface reaction coefficient of SiH3 is temperature-independent at a value of = 0.26 0.05 at a growing a-Si H surface in a... [Pg.39]

Information about the surface reaction coefficients of radicals Si H2 +i where n > 1 is scarce. Because the structure of these radicals is similar to that of SiH3, the same surface reaction coefficients are used. It is assumed that if Si H2 i+1 radicals recombine at the surface with a hydrogen atom, a Si H2,+2 neutral is formed and is reflected into the discharge. Another possibility is the surface recombination of Si,H2 +i radicals with physisorbed Si ,H2m + i radicals at the surface. Matsuda et al. [137] have shown that the probability of surface recombination of SiHs with physisorbed SiH3 decreases with increasing substrate temperature. Doyle et al. [204] concluded that at a typical substrate temperature of 550 K, SiH3 radicals mainly recombine with physisorbed H atoms. [Pg.40]

For the SiH2 radicals the surface reaction coefficients have been taken as 5 = P = 0.8 [192]. This sticking coefficient is large because there is no barrier for insertion of this species into the a-Si H surface. Kae-Nune et al. [217] specify a surface recombination probability of about 1 for atomic hydrogen on an a-Si H surface during deposition that results mainly in recombination of H with an H-atom bounded to the surface. [Pg.40]

A possible explanation for the difference in tendencies of the deposition rate between experiment and model is that in the model the surface reaction and sticking coefficients of the radicals are taken to be independent of the discharge characteristics. In fact, these surface reaction coefficients may be influenced by the ions impinging on the surface [251]. An impinging ion may create an active site (or dangling bond) at the surface, which enhances the sticking coefficient. Recent experiments by Hamers et al. [163] corroborate this the ion flux increases with the RF frequency. However, Sansonnens et al. [252] show that the increase of deposition rate cannot be explained by the influence of ions only. [Pg.56]

A sticking model is used for the plasma-wall interaction [137]. In this model each neutral particle has a certain surface reaction coefficient, which specifies the probability that the neutral reacts at the surface when hitting it. In case of a surface reaction two events may occur. The first event is sticking, which in the case of a silicon-containing neutral leads to deposition. The second event is recombination, in which the radical recombines with a hydrogen atom at the wall and is reflected back into the discharge. [Pg.59]

The formation of Grignard reagents takes place at the metal surface. Reaction commences with an electron transfer to the halide and decomposition of the radical ion, followed by rapid combination of the organic group with a magnesium ion.1 It... [Pg.620]

Can STM throw light on whether homogeneous gas-phase and heterogeneous surface reactions encompass a common theme - the participants of surface radicals in a two-dimensional gas ... [Pg.5]


See other pages where Radical surface reaction is mentioned: [Pg.25]    [Pg.265]    [Pg.274]    [Pg.568]    [Pg.25]    [Pg.265]    [Pg.274]    [Pg.568]    [Pg.2804]    [Pg.405]    [Pg.378]    [Pg.429]    [Pg.38]    [Pg.315]    [Pg.4]    [Pg.143]    [Pg.423]    [Pg.160]    [Pg.917]    [Pg.166]    [Pg.169]    [Pg.172]    [Pg.129]    [Pg.81]    [Pg.339]    [Pg.93]    [Pg.95]    [Pg.47]    [Pg.91]    [Pg.213]    [Pg.5]    [Pg.51]    [Pg.93]    [Pg.95]    [Pg.375]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Radical and Photochemical Reactions on Diamond Surfaces

Reactions Involving Radicals, Electron-Deficient Species, Reducing Agents, and at Surfaces

Surface radicals

Surface-located radical reactions

© 2024 chempedia.info