Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiationless transitions energies

Once the excited molecule reaches the S state it can decay by emitting fluorescence or it can undergo a fiirtlier radiationless transition to a triplet state. A radiationless transition between states of different multiplicity is called intersystem crossing. This is a spin-forbidden process. It is not as fast as internal conversion and often has a rate comparable to the radiative rate, so some S molecules fluoresce and otliers produce triplet states. There may also be fiirther internal conversion from to the ground state, though it is not easy to detemiine the extent to which that occurs. Photochemical reactions or energy transfer may also occur from S. ... [Pg.1143]

Fig. 11. (a) Diagram of energy levels for a polyatomic molecule. Optical transition occurs from the ground state Ag to the excited electronic state Ai. Aj, are the vibrational sublevels of the optically forbidden electronic state A2. Arrows indicate vibrational relaxation (VR) in the states Ai and Aj, and radiationless transition (RLT). (b) Crossing of the terms Ai and Aj. Reorganization energy E, is indicated. [Pg.27]

A may also return to the ground state via a radiationless transition, most commonly by collisional transfer of energy to a solvent molecule. [Pg.180]

Robinson and Frosch<84,133> have developed a theory in which the molecular environment is considered to provide many energy levels which can be in near resonance with the excited molecules. The environment can also serve as a perturbation, coupling with the electronic system of the excited molecule and providing a means of energy dissipation. This perturbation can mix the excited states through spin-orbit interaction. Their expression for the intercombinational radiationless transition probability is... [Pg.133]

In Chapters 4 and 5 we made use of the theory of radiationless transitions developed by Robinson and Frosch.(7) In this theory the transition is considered to be due to a time-dependent intramolecular perturbation on non-stationary Bom-Oppenheimer states. Henry and Kasha(8) and Jortner and co-workers(9-12) have pointed out that the Bom-Oppenheimer (BO) approximation is only valid if the energy difference between the BO states is large relative to the vibronic matrix element connecting these states. When there are near-degenerate or degenerate zeroth-order vibronic states belonging to different configurations the BO approximation fails. [Pg.440]

Instead of the quantity given by Eq. (15), the quantity given by Eq. (10) was treated as the activation energy of the process in the earlier papers on the quantum mechanical theory of electron transfer reactions. This difference between the results of the quantum mechanical theory of radiationless transitions and those obtained by the methods of nonequilibrium thermodynamics has also been noted in Ref. 9. The results of the quantum mechanical theory were obtained in the harmonic oscillator model, and Eqs. (9) and (10) are valid only if the vibrations of the oscillators are classical and their frequencies are unchanged in the course of the electron transition (i.e., (o k = w[). It might seem that, in this case, the energy of the transition and the free energy of the transition are equal to each other. However, we have to remember that for the solvent, the oscillators are the effective ones and the parameters of the system Hamiltonian related to the dielectric properties of the medium depend on the temperature. Therefore, the problem of the relationship between the results obtained by the two methods mentioned above deserves to be discussed. [Pg.104]

The development of comprehensive models for transition metal carbonyl photochemistry requires that three types of data be obtained. First, information on the dynamics of the photochemical event is needed. Which reactant electronic states are involved What is the role of radiationless transitions Second, what are the primary photoproducts Are they stable with respect to unimolecular decay Can the unsaturated species produced by photolysis be spectroscopically characterized in the absence of solvent Finally, we require thermochemical and kinetic data i.e. metal-ligand bond dissociation energies and association rate constants. We describe below how such data is being obtained in our laboratory. [Pg.104]

Internal conversion refers to radiationless transition between states of the same multiplicity, whereas intersystem crossing refers to such transitions between states of different multiplicities. The difference between the electronic energies is vested as the vibrational energy of the lower state. In the liquid phase, the vibrational energy may be quickly degraded into heat by collision, and in any phase, the differential energy is shared in a polyatomic molecule among various modes of vibration. The theory of radiationless transitions developed by Robinson and Frosch (1963) stresses the Franck-Condon factor. Jortner et al. (1969) have extensively reviewed the situation from the photochemical viewpoint. [Pg.88]

Organic reactions are exothermic. In 1 ps, radiationless transitions occur, giving the primary product and evolving energy. [Pg.185]

In the quantum mechanical formulation of electron transfer (Atkins, 1984 Closs et al, 1986) as a radiationless transition, the rate of ET is described as the product of the electronic coupling term J2 and the Frank-Condon factor FC, which is weighted with the Boltzmann population of the vibrational energy levels. But Marcus and Sutin (1985) have pointed out that, in the high-temperature limit, this treatment yields the semiclassical expression (9). [Pg.20]

The radiationless transition between two states of same spin is called internal conversion, the one occuring with inversion of spin being termed intersystem crossing. In both processes the excess energy is liberated as heat. All these transitions between different electronic states are customarily preceded by vibrational relaxation, i.e. the deactivation from a higher vibronie level to the v0-level of the same electronic state (Fig. 5). [Pg.14]

Auger electron spectroscopy (29) is a type of electron spectroscopy that is used for determining solid surface elemental and electronic composition. An experiment is conducted by bombarding a solid surface with an electron beam of energy ranging from 1 keV to 10 keV. Alternatively, an x-ray source can be used. The Auger electrons, emitted from an atom by means of a radiationless transition, are... [Pg.395]

Internal conversion Involves radiationless transitions between vibronic states of the same total energy (isoenergetic states) and the same multiplicity. Internal conversion between excited states, e.g. S2-Wr> Si is much faster than internal conversion between Si and S0... [Pg.50]

In the radiative transition shown, most of the energy is removed from the system by photon emission, whereas for the radiationless transition the sum of the electronic energy and vibrational energy is constant and energy is subsequently removed from the system by vibrational relaxation to v = 0 of f2, with the solvent acting as an energy sink. [Pg.78]

The probability of intramolecular energy transfer between two electronic states is inversely proportional to the energy gap, AE, between the two states. The value of the rate constant for radiationless transitions decreases with the size of the energy gap between the initial and final electronic states involved. This law readily provides us with a simple explanation of Kasha s rule and Vavilov s rule. [Pg.79]

Figure 5.3 The effect of energy gap in vibrational levels on Si VW> S0 internal conversion. Decreasing the vibrational energy gap leads to a radiationless transition in which the T overlap and Franck-Condon factor are reduced and the rate of internal conversion should be decreased... Figure 5.3 The effect of energy gap in vibrational levels on Si VW> S0 internal conversion. Decreasing the vibrational energy gap leads to a radiationless transition in which the T overlap and Franck-Condon factor are reduced and the rate of internal conversion should be decreased...
The molecular ion will be of low symmetry and have an odd electron. It will have as many low-lying excited electronic states as necessary to form essentially a continuum. Radiationless transitions then will result in transfer of electronic energy into vibrational energy at times comparable to the periods of nuclear vibrations. [Pg.14]

The interest aroused by the field of radiationless transitions in recent years has been enormous, and several reviews have been published 72-74) Basically, the ideas of Robinson and Frosch 75) who used the concepts on non-stationary molecular states and time-dependent perturbation theory to calculate the rate of transitions between Born-Oppenheimer states, are still valid, although they have been extended and refined. The nuclear kinetic energy leads to an interaction between different Born-Oppenheimer states and the rate of radiationless transitions is given by... [Pg.41]

A term in photochemistry and photophysics describing an isoenergetic radiationless transition between two electronic states having different multiphcities. Such a process often results in the formation of a vibrationally excited molecular entity, at the lower electronic state, which then usually deactivates to its lowest vibrational energy level. See also Internal Conversion Fluorescence... [Pg.372]


See other pages where Radiationless transitions energies is mentioned: [Pg.45]    [Pg.437]    [Pg.45]    [Pg.437]    [Pg.245]    [Pg.907]    [Pg.1049]    [Pg.1143]    [Pg.169]    [Pg.1]    [Pg.284]    [Pg.325]    [Pg.508]    [Pg.509]    [Pg.299]    [Pg.247]    [Pg.391]    [Pg.338]    [Pg.78]    [Pg.81]    [Pg.226]    [Pg.237]    [Pg.135]    [Pg.197]    [Pg.285]   
See also in sourсe #XX -- [ Pg.173 , Pg.174 ]




SEARCH



Energy gap law for radiationless transitions

Energy, transition energies

Radiationless transitions

Radiationless transitions energy transfer

Transition energies

© 2024 chempedia.info