Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiation radicals

The production of the (SCN)2 radical has been carefully studied, and the G value accurately determined. With its broad absorption band and generous molar absorptivity (8472 = 7580 dm mol" cm" ), this radiolysis dosimeter system provides an excellent means of calibrating the radiation radical yield (Figure 3). The oxidation of SCN" by HO (reaction 30) is virtually diffusion controlled, as is the subsequent complexation of the radical with SCN . Since... [Pg.24]

In order to obtain a polymer by the grafting of an existing polymer onto a main polymer chain, reactive groups or radicals must be created on the main chain and/or on the grafted section. An example is the grafting of rubber onto a polystjrrene chain. By means of i or y radiation, radicals can be formed on the polyst3n ene or on the rubber chain, which then may react with each other or with existing double bonds in the rubber polymer chain. [Pg.888]

Flowever, in order to deliver on its promise and maximize its impact on the broader field of chemistry, the methodology of reaction dynamics must be extended toward more complex reactions involving polyatomic molecules and radicals for which even the primary products may not be known. There certainly have been examples of this notably the crossed molecular beams work by Lee [59] on the reactions of O atoms with a series of hydrocarbons. In such cases the spectroscopy of the products is often too complicated to investigate using laser-based techniques, but the recent marriage of intense syncluotron radiation light sources with state-of-the-art scattering instruments holds considerable promise for the elucidation of the bimolecular and photodissociation dynamics of these more complex species. [Pg.881]

In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

Several portions of Section 4, Properties of Atoms, Radicals, and Bonds, have been significantly enlarged. For example, the entries under Ionization Energy of Molecular and Radical Species now number 740 and have an additional column with the enthalpy of formation of the ions. Likewise, the table on Electron Affinities of the Elements, Molecules, and Radicals now contains about 225 entries. The Table of Nuclides has material on additional radionuclides, their radiations, and the neutron capture cross sections. [Pg.1283]

Some of the target molecules gain so much excess internal energy in a short space of time that they lose an electron and become ions. These are the molecular cation-radicals found in mass spectrometry by the direct absorption of radiation. However, these initial ions may react with accompanying neutral molecules, as in chemical ionization, to produce protonated molecules. [Pg.384]

Usually, free-radical initiators such as azo compounds or peroxides are used to initiate the polymerization of acrylic monomers. Photochemical (72—74) and radiation-initiated (75) polymerizations are also well known. At a constant temperature, the initial rate of the bulk or solution radical polymerization of acrylic monomers is first order with respect to monomer concentration and one-half order with respect to the initiator concentration. Rate data for polymerization of several common acrylic monomers initiated with 2,2 -azobisisobutyronittile (AIBN) [78-67-1] have been determined and are shown in Table 6. The table also includes heats of polymerization and volume percent shrinkage data. [Pg.165]

A number of methods such as ultrasonics (137), radiation (138), and chemical techniques (139—141), including the use of polymer radicals, polymer ions, and organometaUic initiators, have been used to prepare acrylonitrile block copolymers (142). Block comonomers include styrene, methyl acrylate, methyl methacrylate, vinyl chloride, vinyl acetate, 4-vinylpyridine, acryUc acid, and -butyl isocyanate. [Pg.197]

Sinks, chemical species, or method OH, reaction with OH radical S, sedimentation P, precipitation scavenging NO, reaction with NO radical uv, photolysis by ultraviolet radiation Sr, destmction at surfaces O, adsorption or destmction at oceanic surface. [Pg.367]

Radiation Effects. Polytetrafluoroethylene is attacked by radiation. In the absence of oxygen, stable secondary radicals are produced. An increase in stiffness in material irradiated in vacuum indicates cross-linking (84). Degradation is due to random scission of the chain the relative stabiUty of the radicals in vacuum protects the materials from rapid deterioration. Reactions take place in air or oxygen and accelerated scission and rapid degradation occur. [Pg.352]

Copolymerization is effected by suspension or emulsion techniques under such conditions that tetrafluoroethylene, but not ethylene, may homopolymerize. Bulk polymerization is not commercially feasible, because of heat-transfer limitations and explosion hazard of the comonomer mixture. Polymerizations typically take place below 100°C and 5 MPa (50 atm). Initiators include peroxides, redox systems (10), free-radical sources (11), and ionizing radiation (12). [Pg.365]

The synthesis of the high molecular weight polymer from chlorotrifluoroethylene [79-38-9] has been carried out in bulk (2 >—21 solution (28—30), suspension (31—36), and emulsion (37—41) polymerisation systems using free-radical initiators, uv, and gamma radiation. Emulsion and suspension polymers are more thermally stable than bulk-produced polymers. Polymerisations can be carried out in glass or stainless steel agitated reactors under conditions (pressure 0.34—1.03 MPa (50—150 psi) and temperature 21—53°C) that require no unique equipment. [Pg.394]

The reaction with fluorine occurs spontaneously and explosively, even in the dark at low temperatures. This hydrogen—fluorine reaction is of interest in rocket propellant systems (99—102) (see Explosives and propellants, propellants). The reactions with chlorine and bromine are radical-chain reactions initiated by heat or radiation (103—105). The hydrogen-iodine reaction can be carried out thermally or catalyticaHy (106). [Pg.417]

In the heating and cracking phase, preheated hydrocarbons leaving the atomizer are intimately contacted with the steam-preheated oxygen mixture. The atomized hydrocarbon is heated and vaporized by back radiation from the flame front and the reactor walls. Some cracking to carbon, methane, and hydrocarbon radicals occurs during this brief phase. [Pg.422]

The ptincipal commercial initiators used to generate radicals are peroxides and a2o compounds. Lesser amounts of carbon—carbon initiators and photoinitiators, and high energy ionising radiation are also employed commercially to generate radicals. [Pg.219]

Initiation of radical reactions with uv radiation is widely used in industrial processes (85). In contrast to high energy radiation processes where the energy of the radiation alone is sufficient to initiate reactions, initiation by uv irradiation usually requires the presence of a photoinitiator, ie, a chemical compound or compounds that generate initiating radicals when subjected to uv radiation. There are two types of photoinitiator systems those that produce initiator radicals by intermolecular hydrogen abstraction and those that produce initiator radicals by photocleavage (86—91). [Pg.230]

Addition reactions between isoprene and tetrahalomethanes can be induced by peroxides, high energy ionizing radiation, or other radical-generating... [Pg.465]

A third source of initiator for emulsion polymerisation is hydroxyl radicals created by y-radiation of water. A review of radiation-induced emulsion polymerisation detailed efforts to use y-radiation to produce styrene, acrylonitrile, methyl methacrylate, and other similar polymers (60). The economics of y-radiation processes are claimed to compare favorably with conventional techniques although worldwide iadustrial appHcation of y-radiation processes has yet to occur. Use of y-radiation has been made for laboratory study because radical generation can be turned on and off quickly and at various rates (61). [Pg.26]

The effects of uv radiation on V/-nitroso compounds depend on the pH and the medium. Under neutral conditions and ia the absence of radical scavengers, these compounds often appear chemically stable, although the E—Z equiUbrium, with respect to rotation around the N—N bond, can be affected (70). This apparent stabiUty is due to rapid recombination of aminyl radicals and nitric oxide [10102-43-9] formed duting photolysis. In the presence of radical scavengers nitrosamines decay rapidly (71). At lower pH, a variety of photoproducts are formed, including compounds attributed to photoelimination, photoreduction, and photo-oxidation (69). Low concentrations of most nitrosamines, even at neutral pH, can be eliminated by prolonged kradiation at 366 nm. This technique is used ki the identification of /V-nitrosamines that are present ki low concentrations ki complex mixtures (72). [Pg.108]


See other pages where Radiation radicals is mentioned: [Pg.53]    [Pg.121]    [Pg.8]    [Pg.56]    [Pg.640]    [Pg.98]    [Pg.90]    [Pg.53]    [Pg.121]    [Pg.8]    [Pg.56]    [Pg.640]    [Pg.98]    [Pg.90]    [Pg.374]    [Pg.1547]    [Pg.350]    [Pg.377]    [Pg.118]    [Pg.118]    [Pg.319]    [Pg.3]    [Pg.170]    [Pg.170]    [Pg.490]    [Pg.385]    [Pg.331]    [Pg.219]    [Pg.230]    [Pg.532]    [Pg.254]    [Pg.409]    [Pg.453]    [Pg.51]    [Pg.379]   


SEARCH



Ascorbic acid radiation-induced, free-radical

Crystalline, radiation-induced, free-radical

Crystalline, radiation-induced, free-radical reactions

Free Radical Pairs Produced by Irradiation of Polymers with Ionizing Radiation

Free Radicals Produced by Irradiation of Polymers with Ionizing Radiation

Free radical and radiation

Free radical gamma radiation-induced

Free radical radiation

Free radicals radiation-induced

Gamma-radiation, free-radical graft

Ionizing radiation, free-radical graft

Peroxyl-radical reactions, radiation-induced

Polymer radiation resistance radical scavenging

Pulse radiolysis radiation-generated radicals

Radiation techniques, application to the study of organic radicals

Radiation, radicals formed

Radiation-generated radicals

Radiation-induced polymerization free-radical chain initiation

Radiation-induced polymerization free-radical mechanisms

Radiation-initiated free radical polymerization

Radical Processes Induced by Ionizing Radiation

Radical Production by Radiation

Radicals radiation induced

Radicals, organic application of radiation

Radicals, organic application of radiation techniques

Radicals, radiation-induce

Ultraviolet radiation free-radical reactions

Ultraviolet radiation radicals

© 2024 chempedia.info