Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum solvent effects

NON-ADIABATIC MOLECULAR DYNAMICS AND QUANTUM SOLVENT EFFECTS... [Pg.339]

To recapitulate, the Bohmian quantum-classical, stochastic mean-field and quantized mean-field approaches described above are capable of reproducing quantum solvent effects that are crucial in simulation of NA chemical processes. The approaches are computationally simple and are particularly suitable for studies of large chemical systems. [Pg.357]

If reliable quantum mechanical calcnlations of reactant and transition state stnictures in vacnnm are feasible, treating electrostatic solvent effects on the basis of SRCF-PCM rising cavity shapes derived from methods... [Pg.838]

A3.8.5 SOLVENT EFFECTS IN QUANTUM CHARGE TRANSFER PROCESSES... [Pg.893]

The intensities are plotted vs. v, the final vibrational quantum number of the transition. The CSP results (which for this property are almost identical with CI-CSP) are compared with experimental results for h in a low-temperature Ar matrix. The agreement is excellent. Also shown is the comparison with gas-phase, isolated I. The solvent effect on the Raman intensities is clearly very large and qualitative. These show that CSP calculations for short timescales can be extremely useful, although for later times the method breaks down, and CTCSP should be used. [Pg.374]

The GB equation is suitable for the description of solvent effects in molecular mechanics and dynamics [16], as well as in quantum mechanical calculations (17,18]. An excellent review of implicit solvation models, with more than 900 references, is given by Cramer and Truhlar [19]. [Pg.365]

The molecular mechanics calculations discussed so far have been concerned with predictions of the possible equilibrium geometries of molecules in vacuo and at OK. Because of the classical treatment, there is no zero-point energy (which is a pure quantum-mechanical effect), and so the molecules are completely at rest at 0 K. There are therefore two problems that I have carefully avoided. First of all, I have not treated dynamical processes. Neither have I mentioned the effect of temperature, and for that matter, how do molecules know the temperature Secondly, very few scientists are interested in isolated molecules in the gas phase. Chemical reactions usually take place in solution and so we should ask how to tackle the solvent. We will pick up these problems in future chapters. [Pg.57]

The study on ring transformations of heterocycles is an attractive subject of research for many years. This great interest is due to the fact that these reactions are usually easily performed and that by these ring transformations heterocycles can be synthesized which are otherwise difficult to obtain. Moreover, unravelling the course of the ring transformation has always been a challenging problem and has attracted the interest of many chemists it requires studies on substituent and solvent effects, labeling and NMR studies, kinetic studies and quantum chemical calculations. In the course of... [Pg.31]

In the previous chapter we considered a rather simple solvent model, treating each solvent molecule as a Langevin-type dipole. Although this model represents the key solvent effects, it is important to examine more realistic models that include explicitly all the solvent atoms. In principle, we should adopt a model where both the solvent and the solute atoms are treated quantum mechanically. Such a model, however, is entirely impractical for studying large molecules in solution. Furthermore, we are interested here in the effect of the solvent on the solute potential surface and not in quantum mechanical effects of the pure solvent. Fortunately, the contributions to the Born-Oppenheimer potential surface that describe the solvent-solvent and solute-solvent interactions can be approximated by some type of analytical potential functions (rather than by the actual solution of the Schrodinger equation for the entire solute-solvent system). For example, the simplest way to describe the potential surface of a collection of water molecules is to represent it as a sum of two-body interactions (the interac-... [Pg.74]

SOLVENT EFFECTS WITH QUANTUM MECHANICAL SOLUTE CALCULATIONS... [Pg.83]

The results presented in this part show that the characterization of cationic stability by means of a well-adapted reaction energy for the chemical system is better than ordering the cations according to their heats of formation. The importance of considering solvent effects in quantum chemical calculations is indicated by the fact that gas phase results are thereby modified and correspond with the experiments after that. [Pg.209]

Keywords solvent parameters, quantum chemical calculations, solvent effect... [Pg.313]

Amides, alkaline hydrolysis, 215 Anharmonic systems, direct evaluation of quantum time-correlation functions, 93 Apollo DSP—160, CHARMM performance, 129/ simulations, solvent effects, 83... [Pg.423]

The molecular modelling approach, taking into account the pyruvate—cinchona alkaloid interaction and the steric constraints imposed by the adsorption on the platinum surface, leads to a reasonable explanation for the enantio-differentiation of this system. Although the prediction of the complex formed between the methyl pyruvate and the cinchona modifiers have been made for an ideal case (solvent effects and a quantum description of the interaction with the platinum surface atoms were not considered), this approach proved to be very helpful in the search of new modifiers. The search strategy, which included a systematic reduction of the cinchona alkaloid structure to the essential functional parts and validation of the steric constraints imposed to the interaction complex between modifier and methyl pyruvate by means of molecular modelling, indicated that simple chiral aminoalcohols should be promising substitutes for cinchona alkaloid modifiers. Using the Sharpless symmetric dihydroxylation as a key step, a series of enantiomerically pure 2-hydroxy-2-aryl-ethylamines... [Pg.57]

The validity of the above conclusions rests on the reliability of theoretical predictions on excited state barriers as low as 1-2 kcal mol . Of course, this required as accurate an experimental check as possible with reference to both the solvent viscosity effects, completely disregarded by theory, and the dielectric solvent effects. As for the photoisomerization dynamics, the needed information was derived from measurements of fluorescence lifetimes (x) and quantum yields (dielectric constant, where extensive formation of ion pairs may occur [60], the observed photophysical properties are confidently referable to the unperturbed BMPC cation. Figure 6 shows the temperature dependence of the... [Pg.391]

The MD/QM methodology [18] is likely the simplest approach for explicit consideration of quantum effects, and is related to the combination of classical Monte Carlo sampling with quantum mechanics used previously by Coutinho et al. [27] for the treatment of solvent effects in electronic spectra, but with the variation that the MD/QM method applies QM calculations to frames extracted from a classical MD trajectory according to their relative weights. [Pg.4]

Iordanov TD, Davis JL, Masunov AE, Levenson A, Przhonska OV, Kachkovski AD (2009) Symmetry breaking in cationic polymethine dyes, part 1 ground state potential energy surfaces and solvent effects on electronic spectra of streptocyanines. Int J Quantum Chem 109 3592-3601... [Pg.146]

Altoe P, Bemardi F, Garavelli M, Orlandi G, Negri F (2005) Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore a quantum-chemical study. J Am Chem Soc 127 3952-3963... [Pg.377]

The SCRF approach became a standard tool167 for estimating solvent effects and was combined with various quantum chemical methods that range from semi-empirical161 to the post-Hartree-Fock ab initio ones. It can also be combined with the Kohn-Sham formalism where the Kohn-Sham Hamiltonian (Eq. 4.2) is used for the gas-phase Hamiltonian in Eq. 4.15. The effective Kohn-Sham Hamiltonian for the system embedded in the dielectric environment takes the following form ... [Pg.110]


See other pages where Quantum solvent effects is mentioned: [Pg.339]    [Pg.339]    [Pg.893]    [Pg.894]    [Pg.894]    [Pg.895]    [Pg.632]    [Pg.18]    [Pg.410]    [Pg.417]    [Pg.433]    [Pg.323]    [Pg.15]    [Pg.217]    [Pg.226]    [Pg.7]    [Pg.271]    [Pg.72]    [Pg.490]    [Pg.267]    [Pg.383]    [Pg.319]    [Pg.382]    [Pg.269]    [Pg.118]   
See also in sourсe #XX -- [ Pg.339 ]

See also in sourсe #XX -- [ Pg.353 , Pg.354 , Pg.355 , Pg.356 ]




SEARCH



Quantum chemistry methods solvent effects

Quantum effective

Quantum effects

Quantum yield solvent effect

Quantum yield solvent polarity, effect

Solvent Effects with Quantum Mechanical Solute Calculations

© 2024 chempedia.info