Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Qualitative analysis inductively coupled plasma-mass

Analysis. Be can be quantitatively determined by colorimetry down to 40 ppb using eriochrome cyanine R or acetylacetone. The sensitivity may be improved by electrothermal absorption spectroscopy (ETAS) to 1 ppb and to 0.1 ppb by inductively-coupled plasma emission spectroscopy (ICPES) or inductively-coupled plasma mass spectroscopy (ICPMS). A simple spot test for qualitative detection of Be is one with quinalizarin in alcoholic NaOH which can detect 3 ppm. The color is produced by both Be and Mg. If the color persists after the addition of Br2 water. Be is present. If the color is bleached. Mg is indicated. [Pg.133]

Inorganic pigments and lakes (organic dyes bonded to an inorganic support) can be recognized by the ratio of elements in their composition, making elemental analysis an important tool in their identification. EDS may facilitate an initial qualitative analysis, but quantitative analysis and the detection of trace elements are needed to identify the inorganic colorant components. Due to sample size restrictions, the methods that can be employed are limited. The techniques of inductively-coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectroscopy (ICP-OES), and laser ablation ICP-MS are described in the literature (56). [Pg.26]

Table 11-1 list-s the most important types of atomic mass spectrometry. Historically, thermal ionization mass spectrometry and spark source mass spectrometry were the first mass spectrometric methods developed for qualitative and quantitative elemental analysis, and these types of procedures still find applications, although they are now overshadowed by some of the other methods listed in Table 11-1, particularly inductively coupled plasma mass. spectrometry (fCPMS). [Pg.149]

Inductively coupled plasma—mass spectrometry is versatile enough to provide many approaches for performing a variety of types of analyses. The technique s high sensitivity, coupled with multielement detection capability, allows a wide scope of qualitative, semiquantitative, and quantitative determinations to be achieved over a large dynamic concentration range (minor to ultratrace concentration levels). By optimizing these quantitation methods, solutions to specific analysis problems can be arrived at readily. [Pg.103]

NMR) [24], and Fourier transform-infrared (FT-IR) spectroscopy [25] are commonly applied methods. Analysis using mass spectrometric (MS) techniques has been achieved with gas chromatography-mass spectrometry (GC-MS), with chemical ionisation (Cl) often more informative than conventional electron impact (El) ionisation [26]. For the qualitative and quantitative characterisation of silicone polyether copolymers in particular, SEC, NMR, and FT-IR have also been demonstrated as useful and informative methods [22] and the application of high-temperature GC and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) is also described [5]. [Pg.239]

Mass analysis is a relatively simple technique, with the number of ions detected being directly proportional to the number of ions introduced into the mass spectrometer from the ion source. In atomic mass spectrometry the ion source produces atomic ions (rather than the molecular ions formed for qualitative organic analysis) which are proportional to the concentration of the element in the original sample. It was Gray who first recognized that the inductively coupled plasma would make an ideal ion source for atomic mass spectrometry and, in parallel with Fassel and Honk, and Douglas and French developed the ion sampling interface necessary to couple an atmospheric pressure plasma with a mass spectrometer under vacuum. [Pg.2]

Laser and inductively coupled plasma (ICP) emission spectroscopy constitute powerful multielement qualitative and quantitative tools for the analysis of metals, paints, and glass. Finally, ICP with mass spectrometry (MS) makes an increasing impact on the analyses of trace evidence from pollution source determination to traditional trace exploitation. [Pg.1609]

Analytical techniques used in qualitative analysis include flame tests (Chapter 2) and precipitation reactions (Chapters 3 and 13). Analytical techniques used in quantitative analysis include titrations (Chapter 1), inductively coupled plasma (ICP) spectroscopy (Chapter 22 on the accompanying website), ultraviolet—visible spectroscopy (Chapter 23 on the accompanying website), infrared spectroscopy and various chromatographic techniques (Chapter 23). Analytical techniques used in structural analysis include NMR, IR spectroscopy, mass spectrometry and visible—ultraviolet spectroscopy. Important areas that employ analytical techniques include ... [Pg.410]


See other pages where Qualitative analysis inductively coupled plasma-mass is mentioned: [Pg.295]    [Pg.237]    [Pg.249]    [Pg.3979]    [Pg.1310]    [Pg.2866]    [Pg.2867]    [Pg.1417]    [Pg.1386]    [Pg.1414]   


SEARCH



Coupled Plasma

Induction-coupled plasma

Inductive analysis

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled plasma analysis

Inductively coupled plasma mass

Mass plasma

Qualitative analysis

© 2024 chempedia.info