Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvic acid oxidative decarboxylation

Reactions of the TCA cycle Enzyme that oxidatively decarboxylates pyruvate, its coenzymes, activators, and inhibitors REACTIONS OF THE TRICARBOXYLIC ACID CYCLE (p. 107) Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase complex producing acetyl CoA, which is the major fuel for the tricarboxylic acid cycle (TCA cycle). The irreversible set of reactions catalyzed by this enzyme complex requires five coenzymes thiamine pyrophosphate, lipoic acid, coenzyme A (which contains the vitamin pantothenic acid), FAD, and NAD. The reaction is activated by NAD, coenzyme A, and pyruvate, and inhibited by ATP, acetyl CoA, and NADH. [Pg.477]

The formation of acetyl CoA from carbohydrates is less direct than from fat. Recall that carbohydrates, most notably glucose, are processed by glycolysis into pyruvate (Chapter 16). Under anaerobic conditions, the pyruvate is converted into lactic acid or ethanol, depending on the organism. Under aerobic conditions, the pyruvate is transported into mitochondria in exchange for OH by the pyruvate carrier, an antiporter (Section 13.4). In the mitochondrial matrix, pyruvate is oxidatively decarboxylated by the pyruvate dehydrogenase complex to form acetyl CoA. [Pg.701]

Pyruvate oxidase Oxidative decarboxylation of pyruvic acid CH3COCOOH CH3COOH or to CH3COOPO3 + CO2 FAD... [Pg.564]

Pyruvic decarboxylase controls the entry of the end products of glycolysis into the Krebs cycle. Therefore, thiamine deficiency must have dramatic consequences if no alternative pathway is available for pyruvic acid oxidation. Understandably, in the absence of an alternative pathway, thiamine deficiency leads to a block of pyruvic decarboxylation, which is the first of the two reactions of the Krebs cycle requiring thiamine. In addition, half of the thiamine content of the brain is used in that reaction. The maintenance of the integrity of the Krebs cycle is probably more important to the cell than that of the hexose monophosphate shunt. [Pg.269]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

Finally, citrate can be exported from the mitochondria and then broken down by ATP-citrate lyase to yield oxaloacetate and acetyl-CoA, a precursor of fatty acids (Figure 20.23). Oxaloacetate produced in this reaction is rapidly reduced to malate, which can then be processed in either of two ways it may be transported into mitochondria, where it is reoxidized to oxaloacetate, or it may be oxidatively decarboxylated to pyruvate by malic enzyme, with subse-... [Pg.662]

Step 4 of Figure 29.12 Oxidative Decarboxylation The transformation of cr-ketoglutarate to succinyl CoA in step 4 is a multistep process just like the transformation of pyruvate to acetyl CoA that we saw in Figure 29.11. In both cases, an -keto acid loses C02 and is oxidized to a thioester in a series of steps catalyzed by a multienzynie dehydrogenase complex. As in the conversion of pyruvate to acetyl CoA, the reaction involves an initial nucleophilic addition reaction to a-ketoglutarate by thiamin diphosphate vlide, followed by decarboxylation, reaction with lipoamide, elimination of TPP vlide, and finally a transesterification of the dihydrolipoamide thioester with coenzyme A. [Pg.1157]

Figure 17-5. Oxidative decarboxylation of pyruvate by the pyruvate dehydrogenase complex. Lipoic acid is joined by an amide link to a lysine residue of the transacetylase component of the enzyme complex. It forms a long flexible arm, allowing the lipoic acid prosthetic group to rotate sequentially between the active sites of each of the enzymes of the complex. (NAD nicotinamide adenine dinucleotide FAD, flavin adenine dinucleotide TDP, thiamin diphosphate.)... Figure 17-5. Oxidative decarboxylation of pyruvate by the pyruvate dehydrogenase complex. Lipoic acid is joined by an amide link to a lysine residue of the transacetylase component of the enzyme complex. It forms a long flexible arm, allowing the lipoic acid prosthetic group to rotate sequentially between the active sites of each of the enzymes of the complex. (NAD nicotinamide adenine dinucleotide FAD, flavin adenine dinucleotide TDP, thiamin diphosphate.)...
Pyruvic acid is the simplest homologue of the a-keto acid, whose established procedures for synthesis are the dehydrative decarboxylation of tartaric acid and the hydrolysis of acetyl cyanide. On the other hand, vapor-phase contact oxidation of alkyl lactates to corresponding alkyl pyruvates using V2C - and MoOa-baseds mixed oxide catalysts has also been known [1-4]. Recently we found that pyruvic acid is obtained directly from a vapor-phase oxidative-dehydrogenation of lactic acid over iron phosphate catalysts with a P/Fe atomic ratio of 1.2 at a temperature around 230°C [5]. [Pg.201]

As for the reaction path from pyruvic acid to citraconic anhydride, it is considered that a condensation reaction first takes place by a reaction between an oxygen atom of carbonyl group and two hydrogn atoms of methyl group in another molecule, followed by oxidative decarboxylation to form citraconic acid. The produced citraconic acid is dehydrated under the reaction conditions used. The proposed reaction path is shown in Figure 7. [Pg.208]

Summarizing the results obtained by controlled potential electrolysis and polarography, the reaction process for the electrolytic evolution of CO2 was estimated to be as follows the first step was one electron transfer from DMFC in NB to FMN in W as in Eq. (7). The second step was the catalytic reduction of O2 by FMNH as in Eq. (8). The final step was the oxidation of pyruvic acid by the reduction product of O2, H2O2, in W as in Eq. (9), well-known as an oxidative decarboxylation of a-keto acids [43] ... [Pg.499]

Similarly, the pyruvate dehydrogenase complex (PDC) can be activated directly by electrogenerated methyl viologen radical cations (MV +) as mediator. Thus, the naturally PDC-catalyzed oxidative decarboxylation of pyruvic acid in the... [Pg.113]

Besides Szent-Gyorgi and Krebs, other groups were attacking the problem of carbohydrate oxidation. Weil-Malherbe suggested It is probable that the further oxidation of succinic acids passes through the stages of fumaric, malic, and oxaloacetic acid pyruvic acid is formed by the decarboxylation of the latter and the oxidative cycle starts again. K.A.C. Elliott, from the Cancer Research Laboratories at the University of Pennsylvania, also proposed a cycle via some 6C acid. [Pg.73]

The tricarboxylic acid cycle was therefore validated, having been tested not only in pigeon-breast muscle but also with brain, testis, liver, and kidney. The nature of the carbohydrate fragment entering the cycle was still uncertain. The possibility that pyruvate and oxaloacetate condensed to give a 7C derivative which would be decarboxy-lated to citrate, was dismissed partly because the postulated compound was oxidized at a very low rate. Further, work on the oxidation of fatty acids (see Chapter 7) had already established that a 2C fragment like acetate was produced by fatty acid oxidation, en route for carbon dioxide and water. It therefore seemed likely that a similar 2C compound might arise by decarboxylation of pyruvate, and thus condense with oxaloacetate. For some considerable time articles and textbooks referred to this unknown 2C compound as active acetate. ... [Pg.74]

SOME STEPS IN THE TRICARBOXYLIC ACID CYCLE Oxidative Decarboxylation of Pyruvate The Intracellular Function of Vitamin Bj... [Pg.75]

By the late 1930s it was widely accepted that active acetate arose from pyruvate decarboxylation and fatty acid oxidation. Acetate itself... [Pg.77]

Now this reaction is effectively a repeat of the pyruvate acetyl-CoA oxidative decarboxylation we saw at the beginning of the Krebs cycle. It similarly requires thiamine diphosphate, lipoic acid, coenzyme A and NAD+. A further feature in common with that reaction is that 2-oxoglutarate dehydrogenase is also an enzyme complex comprised of three separate enzyme activities. 2-Oxoglutarate is thus transformed into succinyl-CoA, with the loss of... [Pg.587]

The intermediary metabolism has multienzyme complexes which, in a complex reaction, catalyze the oxidative decarboxylation of 2-oxoacids and the transfer to coenzyme A of the acyl residue produced. NAD" acts as the electron acceptor. In addition, thiamine diphosphate, lipoamide, and FAD are also involved in the reaction. The oxoacid dehydrogenases include a) the pyruvate dehydrogenase complex (PDH, pyruvate acetyl CoA), b) the 2-oxoglutarate dehydrogenase complex of the tricarboxylic acid cycle (ODH, 2-oxoglutarate succinyl CoA), and c) the branched chain dehydrogenase complex, which is involved in the catabolism of valine, leucine, and isoleucine (see p. 414). [Pg.134]

The known pyruvic acid 87 [Fig. (25)] [54] was oxidatively decarboxylated [55] to afford the phenylacetic acid 88, which was reductively cyclized to give the required oxindole 89 in nearly quantitative yield. [Pg.360]


See other pages where Pyruvic acid oxidative decarboxylation is mentioned: [Pg.112]    [Pg.960]    [Pg.962]    [Pg.927]    [Pg.49]    [Pg.28]    [Pg.146]    [Pg.140]    [Pg.259]    [Pg.306]    [Pg.336]    [Pg.214]    [Pg.235]    [Pg.545]    [Pg.92]    [Pg.348]    [Pg.77]    [Pg.58]    [Pg.143]    [Pg.438]    [Pg.587]    [Pg.605]    [Pg.146]    [Pg.174]    [Pg.304]    [Pg.17]    [Pg.64]    [Pg.1202]    [Pg.504]    [Pg.527]    [Pg.117]   
See also in sourсe #XX -- [ Pg.196 , Pg.203 ]




SEARCH



Decarboxylation oxide

Decarboxylative oxidation

Oxidation oxidative decarboxylation

Oxidative decarboxylation

Pyruvate decarboxylation

Pyruvate oxidative decarboxylation

Pyruvate/pyruvic acid

Pyruvic acid

Pyruvic acid decarboxylation

Pyruvic acid, oxidation

© 2024 chempedia.info