Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrroles cycloadditions

Fman Cycloadditions 2.2 Pyrrole Cycloadditions 410 419 5. Concluding Remarks 432... [Pg.409]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

CATEGORY llegf CYCLIZATIONS - CYCLOADDITIONS INVOLVING PYRROLE-2,3-QUINODIMETHANE INTERMEDIATES AND EQUIVALENTS... [Pg.85]

This category corresponds to the construction of the carbocyclic ring by 2 + 4 cycloaddition with pyrrole-2,3-quinodimethane intermediates. Such reactions can be particularly useful in the synthesis of 5,6-disubstituted indoles. Although there are a few cases where a pyrrolequinodimethane intermediate is generated, the most useful procedures involve more stable surrogates. Both 1,5-di-hydropyrano[3,4-b]pyrrol-5(lf/)-ones[l] and l,6-dihyropyrano[4,3-b]pyrrol-6-(in)-ones[2] can serve as pyrrole-2,3-quinodimethane equivalents. The adducts undergo elimination of CO2. [Pg.85]

Indoles by cycloaddition with pyrrole-2,3-quinodimethane equivalents... [Pg.86]

Hydroxy-THISs react with electron-deficient alkynes to give nonisol-able adducts that extrude carbonyl sulfide, affording pyrroles (23). Compound 16 (X = 0) seems particularly reactive (Scheme 16) (25). The cycloaddition to benzyne yields isoindoles in low- yield. Further cyclo-addition between isoindole and benzyne leads to an iminoanthracene as the main product (Scheme 17). The cycloadducts derived from electron-deficient alkenes are stable (23, 25) unless highly strained. Thus the two adducts, 18a (R = H, R = COOMe) and 18b (R = COOMe, R = H), formed from 7, both extrude furan and COS under the reaction conditions producing the pyrroles (19. R = H or COOMe) (Scheme 18). Similarly, the cycloadduct formed between 16 (X = 0) and dimethylfumarate... [Pg.9]

Again, it is noteworthy that 4-substituted 5-hydrdxythiazoles (24) react like 5-hydroxy-THISs with alkynes to give pyrroles and sometimes with alkenes to give exo-cycloadducts (Scheme 22). In the latter case other processes compete with the cycloaddition, becoming dominant when 24 is treated with azo-compounds, enamines, or heterocumulenes (31). [Pg.11]

Endo adducts are usually favored by iateractions between the double bonds of the diene and the carbonyl groups of the dienophile. As was mentioned ia the section on alkylation, the reaction of pyrrole compounds and maleic anhydride results ia a substitution at the 2-position of the pyrrole ring (34,44). Thiophene [110-02-1] forms a cycloaddition adduct with maleic anhydride but only under severe pressures and around 100°C (45). Addition of electron-withdrawiag substituents about the double bond of maleic anhydride increases rates of cycloaddition. Both a-(carbomethoxy)maleic anhydride [69327-00-0] and a-(phenylsulfonyl) maleic anhydride [120789-76-6] react with 1,3-dienes, styrenes, and vinyl ethers much faster than tetracyanoethylene [670-54-2] (46). [Pg.450]

Metal-Induced Cycloadditions. The effect of coordination on the metal-iaduced cyclo additions of maleic anhydride and the isostmctural heterocycles furan, pyrrole, and thiophene has been investigated (47). Each heterocycle is bound to an Os(II) center in the complex... [Pg.450]

Furan has the greater reactivity in cycloaddition reactions compared with pyrrole and thiophene the latter is the least reactive diene. However, A -substituted pyrroles show enhanced dienic character compared with the parent heterocycle. [Pg.64]

The reactions of pyrroles with dienophiles generally follow two different pathways involving either a [4 + 2] cycloaddition or a Michael-type addition to a free a-position of the pyrrole ring. Pyrrole itself gives a complex mixture of products with maleic anhydride or maleic acid and with benzyne reacts to give 2-phenylpyrrole rather than a product of cycloaddition (Scheme 47). [Pg.65]

Benzo[Z)]furans and indoles do not take part in Diels-Alder reactions but 2-vinyl-benzo[Z)]furan and 2- and 3-vinylindoles give adducts involving the exocyclic double bond. In contrast, the benzo[c]-fused heterocycles function as highly reactive dienes in [4 + 2] cycloaddition reactions. Thus benzo[c]furan, isoindole (benzo[c]pyrrole) and benzo[c]thiophene all yield Diels-Alder adducts (137) with maleic anhydride. Adducts of this type are used to characterize these unstable molecules and in a similar way benzo[c]selenophene, which polymerizes on attempted isolation, was characterized by formation of an adduct with tetracyanoethylene (76JA867). [Pg.67]

A-Substituted pyrroles, furans and dialkylthiophenes undergo photosensitized [2 + 2] cycloaddition reactions with carbonyl compounds to give oxetanes. This is illustrated by the addition of furan and benzophenone to give the oxetane (138). The photochemical reaction of pyrroles with aliphatic aldehydes and ketones results in the regiospecific formation of 3-(l-hydroxyalkyl)pyrroles (e.g. 139). The intermediate oxetane undergoes rearrangement under the reaction conditions (79JOC2949). [Pg.67]

Pyrrole 1-oxides are known they undergo 1,3-dipolar cycloaddition with DMAD and with A-phenylmaleimide (80TL1833). [Pg.84]

The ring opening of 2//-azirines to yield vinylnitrenes on thermolysis, or nitrile ylides on photolysis, also leads to pyrrole formation (B-82MI30301). Some examples proceeding via nitrile ylides are shown in Scheme 92. The consequences of attempts to carry out such reactions in an intramolecular fashion depend not only upon the spatial relationship of the double bond and the nitrile ylide, but also upon the substituents of the azirine moiety since these can determine whether the resulting ylide is linear or bent. The HOMO and second LUMO of a bent nitrile ylide bear a strong resemblance to the HOMO and LUMO of a singlet carbene so that 1,1-cycloadditions occur to carbon-carbon double bonds rather than the 1,3-cycloadditions needed for pyrrole formation. The examples in Scheme 93 provide an indication of the sensitivity of these reactions to structural variations. [Pg.140]

Dihydrofuran (376) and 2,5-dihydrofuran (377) react with nitrile oxides to give furo[2,3-6 ]isoxazoles (378) and furo[3,4-rf]isoxazoles (379), respectively, as cycloadducts. The double bonds of furan, pyrrole and thiophene also react when the nitrile oxide is generated in situ. Thus furan and benzonitrile oxide gave (380), and with 2-methyl-2-oxazoline the cycloadduct (381) was obtained (71AG(E)810). These and related cycloadditions are discussed in Chapter 4.36. [Pg.148]

Whereas the cycloaddition of arylazirines with simple alkenes produces A -pyrrolines, a rearranged isomer can be formed when the alkene and the azirine moieties are suitably arranged in the same molecule. This type of intramolecular photocycloaddition was first detected using 2-vinyl-substituted azirines (75JA4682). Irradiation of azirine (54) in benzene afforded a 2,3-disubstituted pyrrole (55), while thermolysis gave a 2,5-disubstituted pyrrole (56). Photolysis of azirine (57) proceeded similarly and gave 1,2-diphenylimidazole (58) as the exclusive photoproduct. This stands in marked contrast to the thermal reaction of (57) which afforded 1,3-diphenylpyrazole (59) as the only product. [Pg.56]

Finally, the bimolecular cycloaddition of alkynes with 2-phenylazirines in the presence of molybdenum hexacarbonyl has been studied (79TL2983). The pyrrole derivatives (294) obtained appear to arise from an initial [2 + 2] cycloaddition followed by a ring opening reaction. [Pg.77]

Both (17) (74TL2841) and (18) (76JA4325) undergo cycloadditions at the double bond without disruption of the thiirane ring (80JOC2962, 80JA6633). This type of reaction has been used to convert (17) to the Dewar pyrrole (20) via the tricyclic thiirane (19) (77JA7350). [Pg.187]

H-pyran synthesis from, 3, 759 bis(trimethylsiloxy) in pyrrole synthesis, 4, 333 chromene synthesis from, 3, 750 cycloaddition reactions with isocyanates, azetidin-2-ones from, 7, 261 dihydropyran synthesis from, 3, 771 fuiyl... [Pg.514]

N-alkylation, 4, 236 Pyrrole, 2-formyl-3,4-diiodo-synthesis, 4, 216 Pyrrole, 2-formyl-1-methyl-conformation, 4, 193 Pyrrole, 2-formyl-5-nitro-conformation, 4, 193 Pyrrole, furyl-rotamers, 4, 546 Pyrrole, 2-(2-furyl)-conformation, 4, 32 Pyrrole, 2-halo-reactions, 4, 78 Pyrrole, 3-halo-reactions, 4, 78 Pyrrole, 2-halomethyl-nucleophilic substitution, 4, 274 reactions, 4, 275 Pyrrole, hydroxy-synthesis, 4, 97 Pyrrole, 1-hydroxy-cycloaddition reactions, 4, 303 deoxygenation, 4, 304 synthesis, 4, 126, 363 tautomerism, 4, 35, 197 Pyrrole, 2-hydroxy-reactions, 4, 76 tautomerism, 4, 36, 198... [Pg.815]


See other pages where Pyrroles cycloadditions is mentioned: [Pg.820]    [Pg.820]    [Pg.820]    [Pg.820]    [Pg.308]    [Pg.419]    [Pg.419]    [Pg.419]    [Pg.820]    [Pg.820]    [Pg.820]    [Pg.820]    [Pg.308]    [Pg.419]    [Pg.419]    [Pg.419]    [Pg.133]    [Pg.138]    [Pg.79]    [Pg.526]    [Pg.567]    [Pg.813]    [Pg.813]    [Pg.813]    [Pg.814]    [Pg.815]    [Pg.815]    [Pg.815]    [Pg.815]    [Pg.816]    [Pg.816]    [Pg.817]   
See also in sourсe #XX -- [ Pg.419 ]




SEARCH



2/7-Pyrrole 1-oxides, 1,3-dipolar cycloaddition with DMAD

277-Pyrrole, 1-oxides, 1,3-dipolar cycloaddition

Cycloaddition Syntheses from Vinyl Pyrroles

Cycloaddition of pyrroles

Cycloadditions with pyrroles

Diels-Alder cycloaddition vinyl pyrroles

Pyrrole cycloaddition reaction

Pyrroles 1 - -, intramolecular cycloaddition

Pyrroles 2 + 2 + 2] cycloaddition reactions

Pyrroles cycloaddition

Pyrroles cycloaddition

Pyrroles via cycloaddition

Pyrroles via cycloaddition reactions

Pyrroles via dipolar cycloadditions with munchnones

Pyrroles via metal-catalyzed cycloadditions

Synthesis of Pyrroles via 4 1 Cycloaddition Reactions

© 2024 chempedia.info