Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid Pyridoxal phosphate

These reactions which lead to homocysteine formation in some creatures and its utilization in others are undoubtedly representative of a general thiol group transfer mechanism. The initial condensation of the donor thiol, most commonly cysteine, with some suitably reactive receptor generates a thioether. The differences in the requirement for O-acylation when starting from serine and homoserine may refiect two completely different mechanisms for this thiol substitution reaction. In the case of serine, the removal of the hydroxyl as hydroxide and the stabilization of an electrophilic centre on the side-chain carbon can be achieved through the pyridoxal phosphate-amino acid adduct. A similar example is in the carbon-carbon condensation between serine and imidazole in tryptophan... [Pg.70]

Figure 4. Pyridoxal phosphate + amino acid as a Schiff base. (P) indicates a phosphate group. Bonds around the a-carbon can react as follows a, removal of to form semiquinoid intermediate which may then react in transamination (through ketimine formation), elimination, or racemization b, decarboxylation c, side chain cleavage. Figure 4. Pyridoxal phosphate + amino acid as a Schiff base. (P) indicates a phosphate group. Bonds around the a-carbon can react as follows a, removal of to form semiquinoid intermediate which may then react in transamination (through ketimine formation), elimination, or racemization b, decarboxylation c, side chain cleavage.
Pyridoxine (B ) Pyridoxal phosphate Pyridoxamine phosphate Amino acid transformations... [Pg.780]

Method. Solutions of amino acids in phosphate buffer (pH 9.3) are mixed with an equal volume of freshly prepared 0.4 M pyridoxal solution (adjusted to pH 9.3) and permitted to stand at 8 °C for 30 min. (The molar ratio of pyridoxal to amino acid should be >75 1.) At this point, 1 ml of sodium tetrahydroborate solution (100 mg/ml in 0.1 N sodium hydroxide) is added and the contents are gently shaken. Excess of sodium tetrahydroborate is destroyed by addition of sufficient hydrochloric acid (pH 1-2) prior to column chromatography. The pyridoxal derivatives are separated on a column (100 X 0.6 cm) of Aminex A-5 ion-exchange resin (Bio-Rad) at a mobile phase flow-rate of 33 ml/h. The eluting solvents consist of 0.2 N buffers at pH 3.40,4.44 and 4.86 and a 0.35 N buffer at pH 5.86 (all of the buffers are sodium citrate). The separation of a number of pyridoxyl-... [Pg.159]

Pyridoxal phosphate is a co-enzyme for numerous enzymes, notably amino acid decarboxylases, amino acid transaminases, histaminase and probably diamine oxidase Ais.iw. As most of the evidence on which the mechanism of action of pyridoxal-dependent enzymes is based has been obtained from studies of the non-enzymic interaction of pyridoxal with amino acids, these non-enzymic reactions will be considered first in some detail. [Pg.222]

The reactions of the Cu(II), Fe(III), and Al(III) chelates of Schiff bases formed by the condensation of pyridoxal with amino acids and peptides were found by Snell to have catalytic properties similar to those of the pyridoxal phosphate enzymes. A typical metal-catalyzed reaction of this type would be the transamination of pyridoxal and alanine according to... [Pg.321]

An example of a biologically important aldehyde is pyridoxal phosphate, which is the active form of vitamin Bg and a coenzyme for many of the reactions of a-amino acids. In these reactions the amino acid binds to the coenzyme by reacting with it to form an imine of the kind shown in the equation. Reactions then take place at the amino acid portion of the imine, modifying the amino acid. In the last step, enzyme-catalyzed hydrolysis cleaves the imine to pyridoxal and the modified amino acid. [Pg.728]

The biologically active form of vitamin Bg is pyridoxal-5-phosphate (PEP), a coenzyme that exists under physiological conditions in two tautomeric forms (Figure 18.25). PLP participates in the catalysis of a wide variety of reactions involving amino acids, including transaminations, a- and /3-decarboxylations, /3- and ") eliminations, racemizations, and aldol reactions (Figure 18.26). Note that these reactions include cleavage of any of the bonds to the amino acid alpha carbon, as well as several bonds in the side chain. The remarkably versatile chemistry of PLP is due to its ability to... [Pg.594]

FIGURE 18.27 Pyridoxal-5-phosphate forms stable Schiff base adducts with amino acids and acts as an effective electron sink to stabilize a variety of reaction intermediates. [Pg.596]

The amino acid methionine is biosynthesized by a multistep roule that includes reaction of an inline of pyridoxal phosphate (PLP) to give an unsaturated imine. which then reacts with cysteine. What kinds of reactions are occurring in the two steps ... [Pg.743]

Most amino acids lose their nitrogen atom by a transamination reaction in which the -NH2 group of the amino acid changes places with the keto group of ct-ketoglutarate. The products are a new a-keto acid plus glutamate. The overall process occurs in two parts, is catalyzed by aminotransferase enzymes, and involves participation of the coenzyme pyridoxal phosphate (PLP), a derivative of pyridoxine (vitamin UJ. Different aminotransferases differ in their specificity for amino acids, but the mechanism remains the same. [Pg.1165]

The mechanism of the first part of transamination is shown in Figure 29.14. The process begins with reaction between the a-amino acid and pyridoxal phosphate, which is covalently bonded to the aminotransferase by an iminc linkage between the side-chain -NTI2 group of a lysine residue and the PLP aldehyde group. Deprotonation/reprotonation of the PLP-amino acid imine in steps 2 and 3 effects tautomerization of the imine C=N bond, and hydrolysis of the tautomerized imine in step 4 gives an -keto acid plus pyridoxamine... [Pg.1166]

A subclass of lyases, involved in amino acid metabolism, utilizes pyridoxal 5-phosphate (PLP, 3-hydroxy-2-methyl-5-[(phosphonooxy)methyl]-4-pyridinecarbaldehyde) as a cofactor for imine/ enamine-type activation. These enzymes are not only an alternative to standard fermentation technology, but also offer a potential entry to nonnatural amino acids. Serine hydroxymethyl-tansferase (SHMT EC 2.1.2.1.) combines glycine as the donor with (tetrahydrofolate activated) formaldehyde to L-serine in an economic yield40, but will also accept a range of other aldehydes to provide /i-hydroxy-a-amino acids with a high degree of both absolute and relative stereochemical control in favor of the L-erythro isomers41. [Pg.594]

Pyridoxal phosphate mainly serves as coenzyme in the amino acid metabolism and is covalently bound to its enzyme via a Schiff base. In the enzymatic reaction, the amino group of the substrate and the aldehyde group of PLP form a Schiff base, too. The subsequent reactions can take place at the a-, (3-, or y-carbon of the respective substrate. Common types of reactions are decarboxylations (formation of biogenic amines), transaminations (transfer of the amino nitrogen of one amino acid to the keto analog of another amino acid), and eliminations. [Pg.1290]

In nature, aminotransferases participate in a number of metabolic pathways [4[. They catalyze the transfer of an amino group originating from an amino acid donor to a 2-ketoacid acceptor by a simple mechanism. First, an amino group from the donor is transferred to the cofactor pyridoxal phosphate with formation of a 2-keto add and an enzyme-bound pyridoxamine phosphate intermediate. Second, this intermediate transfers the amino group to the 2-keto add acceptor. The readion is reversible, shows ping-pong kinetics, and has been used industrially in the production ofamino acids [69]. It can be driven in one direction by the appropriate choice of conditions (e.g. substrate concentration). Some of the aminotransferases accept simple amines instead of amino acids as amine donors, and highly enantioselective cases have been reported [70]. [Pg.45]

In 1994, Wang et al. reported the DKR of amino acid derivatives by using pyridoxal 5-phosphate as the racemization catalyst [51]. The enzyme employed to catalyze the... [Pg.104]

Figure 4.26 DKR of amino acids catalyzed by pyridoxal 5-phosphate. Figure 4.26 DKR of amino acids catalyzed by pyridoxal 5-phosphate.
Six compounds have vitamin Bg activity (Figure 45-12) pyridoxine, pyridoxal, pyridoxamine, and their b -phosphates. The active coenzyme is pyridoxal 5 -phos-phate. Approximately 80% of the body s total vitamin Bg is present as pyridoxal phosphate in muscle, mostly associated with glycogen phosphorylase. This is not available in Bg deficiency but is released in starvation, when glycogen reserves become depleted, and is then available, especially in liver and kidney, to meet increased requirement for gluconeogenesis from amino acids. [Pg.491]

Pyridoxal phosphate is a coenzyme for many enzymes involved in amino acid metabolism, especially in transamination and decarboxylation. It is also the cofactor of glycogen phosphorylase, where the phosphate group is catalytically important. In addition, vitamin Bg is important in steroid hormone action where it removes the hormone-receptor complex from DNA binding, terminating the action of the hormones. In vitamin Bg deficiency, this results in increased sensitivity to the actions of low concentrations of estrogens, androgens, cortisol, and vitamin D. [Pg.491]

Pantothenic acid is present in coenzyme A and acyl carrier protein, which act as carriers for acyl groups in metabolic reactions. Pyridoxine, as pyridoxal phosphate, is the coenzyme for several enzymes of amino acid metabolism, including the aminotransferases, and of glycogen phosphorylase. Biotin is the coenzyme for several carboxylase enzymes. [Pg.497]

By contrast, the cytoplasmic decarboxylation of dopa to dopamine by the enzyme dopa decarboxylase is about 100 times more rapid (Am 4x 10 " M) than its synthesis and indeed it is difficult to detect endogenous dopa in the CNS. This enzyme, which requires pyridoxal phosphate (vitamin B6) as co-factor, can decarboxylate other amino acids (e.g. tryptophan and tyrosine) and in view of its low substrate specificity is known as a general L-aromatic amino-acid decarboxylase. [Pg.141]

Histamine is synthesised by decarboxylation of histidine, its amino-acid precursor, by the specific enzyme histidine decarboxylase, which like glutaminic acid decarboxylase requires pyridoxal phosphate as co-factor. Histidine is a poor substrate for the L-amino-acid decarboxylase responsible for DA and NA synthesis. The synthesis of histamine in the brain can be increased by the administration of histidine, so its decarboxylase is presumably not saturated normally, but it can be inhibited by a fluoromethylhistidine. No high-affinity neuronal uptake has been demonstrated for histamine although after initial metabolism by histamine A-methyl transferase to 3-methylhistamine, it is deaminated by intraneuronal MAOb to 3-methylimidazole acetic acid (Fig. 13.4). A Ca +-dependent KCl-induced release of histamine has been demonstrated by microdialysis in the rat hypothalamus (Russell et al. 1990) but its overflow in some areas, such as the striatum, is neither increased by KCl nor reduced by tetradotoxin and probably comes from mast cells. [Pg.270]

Another interesting example is SHMT. This enzyme catalyzes decarboxylation of a-amino-a-methylmalonate with the aid of pyridoxal-5 -phosphate (PLP). This is an unique enzyme in that it promotes various types of reactions of a-amino acids. It promotes aldol/retro-aldol type reactions and transamination reaction in addition to decarboxylation reaction. Although the types of apparent reactions are different, the common point of these reactions is the formation of a complex with PLP. In addition, the initial step of each reaction is the decomposition of the Schiff base formed between the substrate and pyridoxal coenzyme (Fig. 7-3). [Pg.309]


See other pages where Amino acid Pyridoxal phosphate is mentioned: [Pg.1045]    [Pg.1313]    [Pg.1045]    [Pg.1045]    [Pg.360]    [Pg.360]    [Pg.818]    [Pg.1133]    [Pg.1073]    [Pg.1045]    [Pg.1313]    [Pg.1045]    [Pg.1045]    [Pg.360]    [Pg.360]    [Pg.818]    [Pg.1133]    [Pg.1073]    [Pg.360]    [Pg.1043]    [Pg.1043]    [Pg.334]    [Pg.32]    [Pg.66]    [Pg.408]    [Pg.553]    [Pg.243]    [Pg.258]    [Pg.270]    [Pg.285]    [Pg.165]    [Pg.29]   


SEARCH



Acidic phosphates

Amino acid phosphates

Phosphate acid

Pyridoxal phosphat

Pyridoxal phosphate

Pyridoxic acid

© 2024 chempedia.info