Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-Pyridones 4-hydroxy

The 2-nitration of 3-hydroxy- and 3-methoxy-pyridine in 85-96% sulphuric acid involves the conjugate acids, whilst the 3-nitration of 6-hydroxy and 6-methoxy-2-pyridone in 70-77 % sulphuric acid involves the free bases, which react at, or near to the encounter rate. ... [Pg.192]

The 4-hydroxy-THISs react with electron-deficient alkynes to give cycloadducts (3) that spontaneously eliminate sulfur, producing 2-pyridones (3). Bulky 5-substituents lead to a decrease in the addition rate, and elimination of isocyanate with formation of thiophenes becomes favored (3, 12, 13). Benzyne yields an isolable adduct that exclusively extrudes isocyanate on thermolysis, but sulfur on irradiation (Scheme 7)... [Pg.5]

Electron-deficient alkenes add stereospecifically to 4-hydroxy-THISs with formation of endo-cycloadducts. Only with methylvinyl-ketone considerable amounts of the exo isomer are produced (Scheme 8) (16). The adducts (6) may extrude hydrogen sulfide on heating with methoxide producing 2-pyridones. The base is unnecessary with fumaronitrile adducts. The alternative elimination of isocyanate Or sulfur may be controlled using 7 as the dipolarenOphile. The cycloaddition produces two products, 8a (R = H, R = COOMe) and 8b (R = COOMe, R =H) (Scheme 9) (17). Pyrolysis of 8b leads to extrusion of furan and isocyanate to give a thiophene. The alternative S-elimi-nation can be effected by oxidation of the adduct and subsequent pyrolysis. [Pg.5]

Hydroxy-THISs add to the C-C bond of diphenylcyclopropenethione (181. Inner salts without substituents in 5-posnion react similarly with diphenylcyclopropenone (Scheme 10) (4, 18). Pwolysis of the stable adducts (9) leads to rupture of the R-C-CY bond. Subsequent ring closure yields 10. When Y = O. 10 eliminates COS. producing 2-pyridone. When Y = S. 10 is isolated together with its isocyanate extrusion product, a thiopyran-2-thione (18). [Pg.6]

Interestingly. 4-hydroxythiazoles (11) react like the 4-hydroxy-THISs with alkynes and alkenes (Scheme 12) (20). further demonstrating the usefulness of 4-hydroxythiazole derivatives for the preparation of 2-pyridones and thiophenes. [Pg.7]

Mocimycin has been chemically converted to aurodox by protection of the 4-hydroxy group at the pyridone moiety as the benzoylformate, followed by /V-methylation and hydrolytic removal of the protective group (1,55). Whereas aurodox esters are active growth promotors in animals, goldinamines that are A/-acylated by acids other than goldinonic acid, such as acetic, benzoic, or arylsulfonic acids, lack useful antimicrobial or growth-promoting activity (1). [Pg.524]

Elfamycins having 4-hydroxy-2-pyridone moieties (1—6,12) readily undergo reversible internal cyclizations by conjugate addition of either oxygen functionahty on the pyridone ring at C-9. These products can be isolated as exemplified by isoefrotomycin (58). [Pg.524]

Hydroxy-, Hydroxyall l-, and Aminoall lpyridines. A full discussion of the tautomerism occurring in heterocycles with oxygen and sulfur substituents has been pubUshed (38). Equation 2 shows the tautomerism expected in 2-pyridone (16) and 4-pyridone (38). [Pg.339]

Continued efforts to improve the activity of the monobactams against nonfermenting gram-negative rods such as Pseudomonas aeruginosa led to the discovery of SQ 83,360 [104393-00-2] (58), C22H24N q0 2 2 3-hydroxy-4-pyridone containing monocarbam. The enhanced activity of SQ 83,360 is... [Pg.68]

The most convenient synthesis of 6-hydroxy-2-pyridones is by the condensation of a P-ketoester, eg, ethyl acetoacetate, with an active methylene compound, eg, malonic ester, cyanoacetic ester, and an amine. The amine can be omitted if an acetamide is used and in some cases this modification results in a higher yield. [Pg.297]

As discussed in Section 4.01.5.2, hydroxyl derivatives of azoles (e.g. 463, 465, 467) are tautomeric with either or both of (i) aromatic carbonyl forms (e.g. 464,468) (as in pyridones), and (ii) alternative non-aromatic carbonyl forms (e.g. 466, 469). In the hydroxy enolic form (e.g. 463, 465, 467) the reactivity of these compounds toward electrophilic reagents is greater than that of the parent heterocycles these are analogs of phenol. [Pg.98]

Hydroxy-imidazoles, -oxazoles and -thiazoles (484 Z = NR, O, S) can isomerize to 2-azolinones (485a). These compounds all exist predominantly in the azolinone form and show many reactions similar to those of the pyridones. They are mesomeric with zwitterionic and carbonyl canonical forms e.g. 485a 485b Z = NR, O, S). [Pg.99]

A third synthesis which has resulted in the preparation of rieinine and a number of its derivatives is due to Schroeter, Seidler, Sulzbacher and Kanitz,i2 who foimd that cyanoacetyl chloride polymerises spontaneously to 6-chloro-2 4-dihydroxy-3-cyano-pyridine. The di-sodium derivative of this with methyl sulphate produces A -methyl-6-chloro-4-hydroxy-3-cyano-2-pyridone (6-chlororicininic acid), the mono-sodium derivative of which, with methyl bromide or sulphate, is converted into 6-chlororicinine and the latter is reduced by zinc and sulphuric acid to rieinine. A fourth synthesis, starting from 3-nitro-4-pyridone, is due to Reitmann. ... [Pg.7]

The importance of ring size holds also for tautomerism of -pyrrol-5-ones and. d -dihydro-6-pyridones. While the former compounds behave as cyclic 1-methyl-2-alkyl-2-hydroxy-5-pyrrolidones 179) (76) [or, on distillation, as the dehydrated l-methyl-2-alkyl-J -pyrrolones (77)], the latter compounds exist as acyclic N-methylamides of 8-oxo-acids (78) [as shown by infrared spectroscopy (/80)j. The dehydration of 78 during distillation to form l-methyl-2-alkyl-. -dihydro-6-pyridones (79) is achieved only with difficulty. [Pg.272]

In their acidity, basicity, and the directive influence exerted on electrophilic substitution reactions in benzenoid nuclei, acylamino groups show properties which are intermediate between those of free amino and hydroxyl groups, and, therefore, it is at first surprising to find that the tautomeric behavior of acylaminopyridines closely resembles that of the aminopyridines instead of being intermediate between that of the amino- and hydroxy-pyridines. The basicities of the acylaminopyridines are, indeed, closer to those of the methoxy-pyridines than to those of the aminopyridines, the position of the tautomeric equilibrium being determined by the fact that the acyl-iminopyridones are strong bases like the iminopyridones and unlike the pyridones themselves. Thus, relative to the conversion of an... [Pg.420]

The name hydroxamic acid was first used by Losseii in 1869, in the case of oxalohj droxamic acid, obtained from diethyl oxalate and hydroxylamine. Where this grouping forms part of the main cyclic system, however, the compound is named as a derivative of this system. In this review, 2 and 3 would be named as 1-hydroxy-2-pyrrolidone and l-hydroxy-2-pyridone, respectively. [Pg.200]

The overall conversion of a 2-furyl ketal to a 6-substitutod l-hydroxy-2-pyridone (79) can be effected by electrolysis in methanol followed by reaction with hydroxylamine. A Grignard reagent can... [Pg.219]

Uracil, thymine, and cytosine have been studied using this technique (89JA2308 and references therein). For uracil and thymine, the dioxo tautomer predominates in the case of cytosine (70), three tautomers were detected, 70a, 70b, and 70c, the last one being the least abundant. The gas-phase tautomeric equilibrium of 2-pyridone 15a and 2-hydroxypyridine 15b has been studied by MW spectroscopy (93JPC46) using both a conventional spectrometer and a jet-cooled millimeter-wave spectrometer. The relative abundances are 3 1 in favor of the hydroxy form 15b, which exists in the Z conformation shown (Scheme 23). [Pg.46]

We do not discuss in detail the cases of tautomerism of heterocycles embedded in supramolecular structures, such as crown ethers, cryptands, and heterophanes, because such tautomerism is similar in most aspects to that displayed by the analogous monocyclic heterocycles. We concentrate here on modifications that can be induced by the macrocyclic cavity. Tire so-called proton-ionizable crown ethers have been discussed in several comprehensive reviews by Bradshaw et al. [90H665 96CSC(1)35 97ACR338, 97JIP221J. Tire compounds considered include tautomerizable compounds such as 4(5)-substituted imidazoles 1///4//-1,2,4-triazoles 3-hydroxy-pyridines and 4-pyridones. [Pg.38]

Unexpectedly strong intermolecular hydrogen bonding has been reported by IR spectroscopic studies for tetrahydro-4,7-phenanthroline-l,10-dione-3,8-dicarboxylic acids, which exist in the oxo-hydroxy form 165 in both solid state and in solution [78JCS(CC)369].Tlie conclusion was based on comparison of B-, C-, and D-type bands for 165 and their dimethyl esters (detection of hydrogen bonding) and on analysis of IR spectra in the 6 /xm region (pyridine- and pyridone-like bands). [Pg.100]

It is worth noting that the 2-pyridone 42 (99MI1) and thione 43 (88H(27)733), which could react in either of the two ways as shown, with an isocyanate or isothiocyanate and with a nitrile respectively, actually give a one-carbon insertion. There is a case of formation of 2,3 and 3,4 bonds in the preparation of 8-hydroxy-triazolopyridine 44 (83MI1). [Pg.8]

Methyl- and 3-phenyl-4-hydroxy-2-oxo-2//-pyrido[2,1 -Z)]oxazinium inner salts were prepared in the reaction of 2-pyridone and 2-substituted malonyl chloride, prepared in situ from 2-substituted malonic acid with PCI5 in CH2CI2 (00JCS(P2)2096). [Pg.188]

Chemical Name 6-Cyclohexy -1-hydroxy-4-methyl-2(1H)-pyridone ethanolamine salt Common Name —... [Pg.339]

Second generation COMT inhibitors were developed by three laboratories in the late 1980s. Apart from CGP 28014, nitrocatechol is the key structure of the majority of these molecules (Fig. 3). The current COMT inhibitors can be classified as follows (i) mainly peripherally acting nitrocatechol-type compounds (entacapone, nitecapone, BIA 3-202), (ii) broad-spectrum nitrocatechols having activity both in peripheral tissues and the brain (tolcapone, Ro 41-0960, dinitrocatechol, vinylphenylk-etone), and (iii) atypical compounds, pyridine derivatives (CGP 28014,3-hydroxy-4-pyridone and its derivatives), some of which are not COMT inhibitors in vitro but inhibit catechol O-methylation by some other mechanism. The common features of the most new compounds are excellent potency, low toxicity and activity through oral administration. Their biochemical properties have been fairly well characterized. Most of these compounds have an excellent selectivity in that they do not affect any other enzymes studied [2,3]. [Pg.336]

Methoxy-2,6-dimethylpyridine 4-Hydroxy-2,6-diraethylpyridine-l-oxide anion l-Hydroxy-2,6-dimethyl-4-pyridone 4-Methoxy-2,6-dimethylpyridine-l-oxide... [Pg.235]


See other pages where 2-Pyridones 4-hydroxy is mentioned: [Pg.297]    [Pg.88]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.228]    [Pg.234]    [Pg.234]    [Pg.245]    [Pg.15]    [Pg.22]    [Pg.31]    [Pg.41]    [Pg.50]    [Pg.56]    [Pg.242]    [Pg.254]    [Pg.114]    [Pg.53]    [Pg.233]   
See also in sourсe #XX -- [ Pg.356 , Pg.357 , Pg.363 ]




SEARCH



1- Hydroxy-2-pyridone, tautomerism

2-Pyridone ring 5,6-dihydro-5-hydroxy

2-Pyridones 1-hydroxy- from

4-Hydroxy-6-methyl-2 -pyridones, reaction

4-hydroxy-6-methyl-2 -pyridone

6-hydroxy-2-pyridone

Condensation with 2-pyridones, 4-hydroxy

L-Hydroxy-2-pyridone

Pyridone 5,6-dihydro-5-hydroxy

© 2024 chempedia.info