Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylides push-pull

Scheme 4.17 Push-pull ylides for lignan synthesis. Scheme 4.17 Push-pull ylides for lignan synthesis.
Mejla-Oneto and Padwa have explored intramolecular [3+2] cycloaddition reactions of push-pull dipoles across heteroaromatic jr-systems induced by microwave irradiation [465]. The push-pull dipoles were generated from the rhodium(II)-cata-lyzed reaction of a diazo imide precursor containing a tethered heteroaromatic ring. In the example shown in Scheme 6.276, microwave heating of a solution of the diazo imide precursor in dry benzene in the presence of a catalytic amount of rhodium I) pivalate and 4 A molecular sieves for 2 h at 70 °C produced a transient cyclic carbonyl ylide dipole, which spontaneously underwent cydoaddition across the tethered benzofuran Jt-system to form a pentacyclic structure related to alkaloids of the vindoline type. [Pg.278]

In more recent work, Chiu and co-workers [167, 168] have reported an intramolecular 1,3-dipolar cycloaddition approach toward the pseudolaric acids 85, in which the di-polarophile is an unactivated 1,1-disubstituted alkene. Hence, treatment of the diazo ketone 86 with catalytic Rh2(OAc)4 furnished a mixture of tricyclic products 87 and 88 in nearly equal proportions (Scheme 19.13). The synthesis of 2-pyridones [169] and their application to the ipalbidine core [170] has been described. The pentacyclic skeleton of the aspidosperma alkaloids was prepared via the cycloaddition of a push-pull carbonyl ylide [171]. The dehydrovindorosine alkaloids 89 have also been investigated, in which the a-diazo-/ -ketoester 90 undergoes a facile cycloaddition to furnish 91 in... [Pg.447]

The first report regarding the strucmre of a stable carbonyl ylide was disclosed in 1983 by Arduengo and co-worker (7). This exciting result was accomphshed by taking advantage of the highly stabilized push-pull nature of carbonyl ylides containing substituents that stabihze the zwitterionic intermediate (Scheme 4.5). [Pg.258]

Carbonyl ylides derived from nitrogen-substituted carbonyl moieties provided for the synthesis of very stable push-pull dipolar intermediates. Although these compounds are quite stable, they still have sufficient reactivity to engage in cycloaddition and related processes. Carbonyl ylides derived from amides have been trapped in intermolecular cycloadditions to give aminals (Scheme 4.34) (56). [Pg.276]

Padwa and co-workers (60,106,107) have been highly active in using carbonyl ylides for the synthesis of a number of bioactive alkaloids (Scheme 4.51). In an approach to the aspidosperma alkaloids, a push-pull carbonyl ylide was used to generate a bicyclic ylide containing a tethered indole moiety. This strategy ultimately allowed for the synthesis of the dehydrovindorosin skeleton (108). Starting from a quaternary substimted piperidone (200), elaboration of the 3-carboxylic acid provided p-ketoester amide 201. Addition of the indole tethered side chain provided a very rapid and efficient method to generate the cycloaddition precursor 203. [Pg.287]

Lycorine is an alkaloid that has attracted attention from both the synthetic community and pharmacologists. Prior synthetic approaches have included inter-and intramolecular Diels-Alder cycloaddition. Based on a similar retrosynthetic disconnection, Padwa and co-workers (106,109) chose to use a push-pull carbonyl ylide cycloaddition with a disubstituted pyrrolidinone core to generate a tricyclic substrate. The major difference for this synthetic smdy was the availability of a labile proton a to the carbonyl moiety (Scheme 4.53). [Pg.288]

Some years later, the first stable thiocarbonyl ylides 9 and 10 were prepared by the reaction of thiourea with cyano-substituted oxiranes (19,20) or by addition of Rh-di(tosyl)carbenoid to benzo-l,2-dithiole-3-thione (21), respectively. Enhanced stability and the low reactivity of 9 and 10, which enables their isolation in crystalline form, results from the push-pull substitution at the two termini [cf. also (22)]. Another class of stable thiocarbonyl ylides that are also able to afford [3 + 2]-cycloaddition products are the mesoionic 1,3-dithiole-4-ones of type 11 (23,24). [Pg.317]

Thiocarbonyl ylides without push-pull stabilization, in the absence of intercepting reagents, undergo 1,3-dipolar electrocyclization to give thiiranes. In accordance... [Pg.324]

Prompted by our earlier work dealing with the internal dipolar cycloaddition reaction of mesoionic oxazolium ylides of type 74, we subsequently studied the rhodium(II) catalyzed reactions of the related a-diazo ketoamide system 154 <97JOC2001 04OL3241 05JOC2206>. Attack of the amido oxygen at the rhodium carbenoid produces a push-pull carbonyl ylide dipole (i.e., 155) that is isomeric with the isomiinchnone class of mesoionic betaines. [Pg.41]

Phosphinocarbene or 2 -phosphaacetylene 4, which is in resonance with an ylide form and with a form containing phosphoms carbon triple bond, is a distillable red oil. Electronic and more importantly steric effects make these two compounds so stable. Carbene 4 adds to various electron-deficient olefins such as styrene and substituted styrenes. Bertrand et al. have made excellent use of the push-pull motif to produce the isolable carbenes 5 and 6, which are stable at low temperature in solutions of electron-donor solvents (THF (tetrahydrofuran), diethyl ether, toluene) but dimerizes in pentane solution. Some persistent carbenes are used as ancillary ligands in organometallic chemistry and in catalysis, for example, the ruthenium-based Grubbs catalyst and palladium-based catalysts for cross-coupling reactions. [Pg.159]

The resulting dimers of the original phosphacumulene ylides are of particular interest because one of their resonance forms represents another type of push-pull cyclobutadiene. [Pg.191]


See other pages where Ylides push-pull is mentioned: [Pg.258]    [Pg.265]    [Pg.182]    [Pg.189]    [Pg.256]    [Pg.258]    [Pg.265]    [Pg.182]    [Pg.189]    [Pg.256]    [Pg.134]    [Pg.255]    [Pg.160]    [Pg.179]    [Pg.211]    [Pg.235]    [Pg.235]    [Pg.158]    [Pg.41]    [Pg.200]    [Pg.235]    [Pg.31]    [Pg.134]    [Pg.50]    [Pg.195]    [Pg.245]    [Pg.114]    [Pg.325]   


SEARCH



PUSH

Push-pull carbonyl ylide cycloadditions

Pushing

© 2024 chempedia.info