Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl ylides cyclic

Mejla-Oneto and Padwa have explored intramolecular [3+2] cycloaddition reactions of push-pull dipoles across heteroaromatic jr-systems induced by microwave irradiation [465]. The push-pull dipoles were generated from the rhodium(II)-cata-lyzed reaction of a diazo imide precursor containing a tethered heteroaromatic ring. In the example shown in Scheme 6.276, microwave heating of a solution of the diazo imide precursor in dry benzene in the presence of a catalytic amount of rhodium I) pivalate and 4 A molecular sieves for 2 h at 70 °C produced a transient cyclic carbonyl ylide dipole, which spontaneously underwent cydoaddition across the tethered benzofuran Jt-system to form a pentacyclic structure related to alkaloids of the vindoline type. [Pg.278]

Some examples of transformations involving carbonyl ylides are listed in Table 4.20. Entry 1 illustrates the conversion of P-acyloxy-a-diazoesters into a-acyloxyacrylates by ring fission of a cyclic carbonyl ylide [978]. This reaction has been used for the synthesis of the natural aldonic acid KDO (3-deoxy-Z)-manno-2-octulosonic acid), which is an essential component of the cell wall lipopolysaccharide of gram-negative bacteria (Figure 4.15). [Pg.208]

A similar reaction was successfully carried out with the five-membered cyclic carbonyl ylide 277 (Scheme 4.49), but attempts using a seven-membered ylide failed [318]. [Pg.155]

Decomposition of diazoketone 110 with rhodium acetate produced the highly electrophilic rhodium stabilized metallocarbenoid that suffers attack by the Lewis basic oxygen of the pendant ketone, producing cyclic carbonyl ylide 111. This ylide was trapped by the addition of an activated acetylene such as DMAD to furnish... [Pg.270]

Decomposition of diazoketone 113 with rhodium acetate led to the formation of a tethered cyclic carbonyl ylide 114 that was poised to undergo an intramolecular cycloaddition, preparing 115 in 60% yield. Interestingly, if DMAD was added to the reaction mixture, the only product arose from intermolecular cycloaddition. [Pg.271]

Padwa et al. (44) studied the diazo-decomposition of 119 and found that the cyclic ylide 120 could be trapped by a variety of heterodipolarophiles such as ethyl cyanoacetate (Mander s reagent) to provide aminal 121 or with benzaldehyde to generate the bicyclic acetal 122. In both cases, only a single isomer was formed, with the regiochemistry easily predicted from frontier orbital considerations. Nair et al. (45) were able to employ the highly functionalized o-quinone 125 for the trapping of carbonyl ylide 124 to provide the highly complex cycloadduct 126 in 76% yield. [Pg.272]

Friedrichsen and co-workers (133) approached substituted benzotropolones from an aromatic substituted carbonyl ylide with a tethered alkyne as the intramolecular dipolarophUe (Scheme 4.67). Starting from an aromatic anhydride, Friedrichsen was able to make the tethered alkyne via addition of either pentyn-ol or hexyn-ol, then transform the recovered benzoic acid to the a-diazocarbonyl cycloaddition precursor. Addition of rhodium acetate resulted in the tandem formation of cyclic carbonyl ylide followed by cycloaddition of the tethered alkyne producing the tricyclic constrained ether 252. Addition of BF3 OEt2 opened the ether bridge, forming the benzotropylium ion, which subsequently rearranged to form the tricyclic benzotropolone (253). [Pg.296]

After completing his initial intramolecular cycloaddition, Hodgson utilized conditions that had been optimized for the intermolecular cycloaddition of DMAD with simple cyclic carbonyl ylides used by Hashimoto and co-workers (139). Hodgson et al. (140) found that the reaction indeed gave excellent overall chemical yield, but the enantioselectivity dropped to 1%, giving essentially a racemic mixture. It appeared that ee ratios were sensitive to the electronic nature of the dipole. Hodgson chose to screen several binaphthol derived rhodium catalysts of the type developed by McKervey and Pirrung, due in part to the reports of... [Pg.299]

Padwa and Prein (105,106) applied chiral, but racemic, isomiinchnone dipoles in diastereoselective 1,3-dipolar cycloadditions. The carbonyl ylide related isomiinch-none derivative rac-70 was obtained from the rhodium-catalyzed cyclization of diazo-derivative rac-69 (Scheme 12.24) (105). The reactions of the in situ formed dipole with a series of alkenes was described and in particular the reaction with maleic acid derivatives 71a-c gave rise to reaction with high selectivities. The tetracyclic products 72a-c were all obtained in good yield with high endo/ exo and diastereofacial selectivities. In another paper by the same authors, the reactions of racemic isomilnchnones having an exo-cyclic chirality was described (106). [Pg.834]

Carbonyl ylides possess versatile reactivities, among which the 1,3-dipolar cycloaddition is the most common and important reaction. The reaction sequence of ylide formation and then 1,3-dipolar cycloaddition can occur in either inter- or intramolecular manner. When the reaction occurs intermolecularly, the overall reaction is a one-pot three-eomponent process leading to oxygen-containing five-membered cyclic compounds, as demonstrated by the example shown in Scheme 8. A mixture of diazo ester 64, benzaldehyde, and dimethyl maleate, upon heating to reflux in CH2CI2 in the presence of 1 mol% rhodium(ii) perfluorobutyrate [Rh2(pfb)4], yields tetrahedrofuran derivative 65 in 49% yield as single diastereomer. " ... [Pg.159]

Toward the synthesis of zaragozic acids, a novel family of fungal metabolites that has been shown to be picomolar competitive inhibitors of squalene synthease, Hodgson s group and Hashimoto s group have used cyclic carbonyl ylide formation/[3 + 2]-cycloaddition approach. " In Hashimoto s synthesis, the 2,8-dioxabicyclo[3,2,l]octane core... [Pg.160]

In the Hodgson s approach, a cyclic carbonyl ylide is trapped by a carbonyl group to afford 6,8-dioxabicyclo[3,2,l] octane 91. This cycloadduct was further converted to alcohol 92, which was subjected to acid-catalyzed rearrangement to give the desired 2,8-dioxabicyclo[3,2,l]octane skeleton 93 (Scheme... [Pg.162]

A variety of cyclic carbonyl ylides and related mesoionic species have been found to undergo intra molecular cycloaddition. [Pg.1162]

Various other [3 + 2] cycloadditions, affording chiral, anellated C6o derivatives with stereogenic centers in the addends are reported in literature. The products were generally obtained as racemates and resulted from reaction of buckminsterfullerene with species like 2,3-disubstituted 2//-azirincs (via nitrile ylides [under direct irradiation] or via 2-azaallenyl radical cations [sensitization by photoinduced electron transfer]),365 1-substituted 5-diazopentane-1,4-diones (via cyclic carbonyl ylides),366 7-alkylidene-2,3-diazabicyclo[2.2.1] hept-2-ene (via a diradicaloid trimethylenemethane derivative),367 1-benzylpy-razolidine-3-ones in the presence of aldehydes (via pyrazolidinium ylides),368 2-trifluoromethyl-2,5-dihydro-l,3-oxazol-5-ones (via nitrile ylides),369 nitro-alkanes in the presence of triethylamine and trimethylsilyl chloride (via N-silyloxynitrones),370 or dv-HOCH2 CH=C H C H 2 OCO 2 H( in the presence of... [Pg.88]

Photolysis of a-cyanostilbene oxides has been examined in cydoaddition reactions with the dipolarophile dimethyl fumarate. The stereochemistry of the tetra-hydrofuran adduct prepared from the ylides formed in the disrotatory electro-cyclic ring-opening predicted by Woodward and Hoffman points to cis-trans isomerization of the carbonyl-ylide, probably via conrotatory cyclization. [Pg.144]

Decomposition of a-diazo ketoamides 208 in the presence of substituted propiolic esters gives spirocyclic oxiranes 209. The reaction involves intramolecular addition of a rhodium carbenoid onto the oxygen atom of the amide group to yield the carbonyl ylide, which, after 1,4-H-migration, produces a cyclic ketene N,0-acetal 210. The latter further reacts with the activated triple bond of the dipolarophile to form a zwitterionic intermediate and, finally, a spirocycloadduct (Scheme 26) (90JA2037). [Pg.136]

Cyclic carbonyl ylides, formed from diazo amides or diazo anhydrides through intramolecular carbene addition to the carbonyl group, react with the triple bond of a dipolarophile to produce bicyclic adducts. The latter undergo a retrodiene reaction, splitting off an alkyl isocyanate or carbon dioxide to give furan derivatives. [Pg.148]


See other pages where Carbonyl ylides cyclic is mentioned: [Pg.213]    [Pg.65]    [Pg.271]    [Pg.278]    [Pg.160]    [Pg.195]    [Pg.202]    [Pg.1091]    [Pg.1112]    [Pg.1161]    [Pg.1162]    [Pg.15]    [Pg.122]    [Pg.124]    [Pg.125]    [Pg.148]    [Pg.150]    [Pg.26]    [Pg.27]    [Pg.29]    [Pg.29]    [Pg.30]    [Pg.31]    [Pg.130]    [Pg.522]    [Pg.149]   


SEARCH



Carbonyl ylide

Cycloadditions of Cyclic Carbonyl Ylides

Ylides cyclic

© 2024 chempedia.info