Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purification boiling point

To a 2 L, 3-neck Morton flask fitted with a thermometer, a mechanical stirrer, and an addition funnel was added the methyl 3-hydroxy-2-methylene-3-phenylpropionate (305.9 g, 1.585 mol) followed by addition of 48% HBr (505 ml, 4.46 mol) in one portion. The flask was immersed in an ice-water bath, at which time concentrated sulfuric acid (460 ml, 8.62 mol) was added dropwise over 90 min and the internal temperature of the reaction mixture was maintained at 23°-27°C throughout the addition process. After removal of the ice-water bath, the mixture was allowed to stir at room temperature overnight. The solution was then transferred to a separatory funnel and the organic layer was allowed to separate from the acid layer. The acids were drained and the organic layer was diluted with 2 L of a 1 1 ethyl acetate/hexane solution, washed with saturated aqueous sodium bicarbonate solution (1 L), dried over sodium sulfate, and concentrated to yield 400.0 g (99%) of the desired (Z)-l-bromo-2-carbomethoxy-3-phenyl-2-propene as a light yellow oil, which was used without any additional purification, boiling point 180°C (12 mm). [Pg.3513]

The purification of solids by crystallisation is based upon differences in their solubility in a given solvent or mixture of solvents. In its simplest form, the crystallisation process consists of (i) dissolving the impure substance in some suitable solvent at or near the boiling point,... [Pg.123]

Metal Purification. Depending on the relative boiling points, purification may be carried out by RE distHlation, aHoying element distHlation, or 2one melting. [Pg.546]

Methylphenol. y -Cresol is produced synthetically from toluene. Toluene is chlorinated and the resulting chlorotoluene is hydrolyzed to a mixture of methylphenols. Purification by distillation gives a mixture of 3-methylphenol and 4-methylphenol since they have nearly identical boiling points. Reaction of this mixture with isobutylene under acid catalysis forms 2,6-di-/ f2 -butyl-4-methylphenol and 2,4-di-/ f2 -butyl-5-methylphenol, which can then be separated by fractional distillation and debutylated to give the corresponding 3- and 4-methylphenols. A mixture of 3- and 4-methylphenols is also derived from petroleum cmde and coal tars. [Pg.67]

The dehydrogenation of the mixture of m- and -ethyltoluenes is similar to that of ethylbenzene, but more dilution steam is required to prevent rapid coking on the catalyst. The recovery and purification of vinyltoluene monomer is considerably more difficult than for styrene owing to the high boiling point and high rate of thermal polymerization of the former and the complexity of the reactor effluent, which contains a large number of by-products. Pressures as low as 2.7 kPa (20 mm Hg) are used to keep distillation temperatures low even in the presence of polymerization inhibitor. The finished vinyltoluene monomer typically has an assay of 99.6%. [Pg.489]

Polymerization Solvent. Sulfolane can be used alone or in combination with a cosolvent as a polymerization solvent for polyureas, polysulfones, polysUoxanes, polyether polyols, polybenzimidazoles, polyphenylene ethers, poly(l,4-benzamide) (poly(imino-l,4-phenylenecarbonyl)), sUylated poly(amides), poly(arylene ether ketones), polythioamides, and poly(vinylnaphthalene/fumaronitrile) initiated by laser (134—144). Advantages of using sulfolane as a polymerization solvent include increased polymerization rate, ease of polymer purification, better solubilizing characteristics, and improved thermal stabUity. The increased polymerization rate has been attributed not only to an increase in the reaction temperature because of the higher boiling point of sulfolane, but also to a decrease in the activation energy of polymerization as a result of the contribution from the sulfonic group of the solvent. [Pg.70]

Purification. Tellurium can be purified by distillation at ambient pressure in a hydrogen atmosphere. However, because of its high boiling point, tellurium is also distilled at low pressures. Heavy metal (iron, tin, lead, antimony, and bismuth) impurities remain in the still residue, although selenium is effectively removed if hydrogen distillation is used (21). [Pg.386]

By-products from EDC pyrolysis typically include acetjiene, ethylene, methyl chloride, ethyl chloride, 1,3-butadiene, vinylacetylene, benzene, chloroprene, vinyUdene chloride, 1,1-dichloroethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane [71-55-6] and other chlorinated hydrocarbons (78). Most of these impurities remain with the unconverted EDC, and are subsequendy removed in EDC purification as light and heavy ends. The lightest compounds, ethylene and acetylene, are taken off with the HCl and end up in the oxychlorination reactor feed. The acetylene can be selectively hydrogenated to ethylene. The compounds that have boiling points near that of vinyl chloride, ie, methyl chloride and 1,3-butadiene, will codistiU with the vinyl chloride product. Chlorine or carbon tetrachloride addition to the pyrolysis reactor feed has been used to suppress methyl chloride formation, whereas 1,3-butadiene, which interferes with PVC polymerization, can be removed by treatment with chlorine or HCl, or by selective hydrogenation. [Pg.419]

Helium Purification and Liquefaction. HeHum, which is the lowest-boiling gas, has only 1 degree K difference between its normal boiling point (4.2 K) and its critical temperature (5.2 K), and has no classical triple point (26,27). It exhibits a phase transition at its lambda line (miming from 2.18 K at 5.03 kPa (0.73 psia) to 1.76 K at 3.01 MPa (437 psia)) below which it exhibits superfluid properties (27). [Pg.333]

One of the most widely applicable and most commonly used methods of purification of liquids or low melting solids (especially of organic chemicals) is fractional distillation at atmospheric, or some lower, pressure. Almost without exception, this method can be assumed to be suitable for all organic liquids and most of the low-melting organic solids. For this reason it has been possible in Chapter 4 to omit many procedures for purification of organic chemicals when only a simple fractional distillation is involved - the suitability of such a procedure is implied from the boiling point. [Pg.8]

The efficiency of a distillation apparatus used for purification of liquids depends on the difference in boiling points of the pure material and its impurities. For example, if two components of an ideal mixture have vapour pressures in the ratio 2 1, it would be necessary to have a still with an efficiency of at least seven plates (giving an enrichment of 2 = 128) if the concentration of the higher-boiling component in the distillate was to be reduced to less than 1% of its initial value. For a vapour pressure ratio of 5 1, three plates would achieve as much separation. [Pg.10]

N2. Because of the low boiling point of the amine a dispersion of NaH in mineral oil can be used directly in this purification without prior removal of the oil. It is HIGHLY FLAMMABLE, and is decomposed by air and moisture. [Org Synth 50 67 1970.]... [Pg.436]

The dehydrogenation reaction produces crude styrene which consists of approximately 37.0% styrene, 61% ethylbenzene and about 2% of aromatic hydrocarbon such as benzene and toluene with some tarry matter. The purification of the styrene is made rather difficult by the fact that the boiling point of styrene (145.2°C) is only 9°C higher than that of ethylbenzene and because of the strong tendency of styrene to polymerise at elevated temperatures. To achieve a successful distillation it is therefore necessary to provide suitable inhibitors for the styrene, to distil under a partial vacuum and to make use of specially designed distillation columns. [Pg.428]

Furfural is a colourless liquid which darkens in air and has a boiling point of 161.7°C at atmospheric pressure. Its principal uses are as a selective solvent used in such operations as the purification of wood resin and in the extraction of butadiene from other refinery gases. It is also used in the manufacture of phenol-furfural resins and as a raw material for the nylons. The material will resinify in the presence of acids but the product has little commercial value. [Pg.810]

Two main methods exist for the production of tantalum and niobium from the mineral raw material. The first method is based on the chlorination of raw material, followed by separation and purification by distillation of tantalum and niobium in the form of pentachlorides, TaCl5 and NbCl5 [24, 29]. Boiling points of tantalum and niobium pentachlorides (236°C and 248°C, respectively) are relatively low and are far enough apart to enable separation by distillation. [Pg.5]

If the catalytic HBr oxidation reactor is required to serve as a central facility for recycling a variety of waste HBr streams and conditions that combust all of the organic contaminants cannot be discovered, then further bromine purification operations are probably required. The simplest operation is distillation of the bromine. Due to the high bromine vapor pressure, bromine distillation can be accomplished using relatively small equipment. This is expected to be a highly effective method of purification, particularly where the boiling points of any contaminants are greater than 10°C different from that of bromine. In other applications, absorption or extraction may be needed. [Pg.316]

We may encounter problems in the purification of substances with a high normal boiling point. If purification only requires a small number of theoretical stages. Short Path Distillation (SPD), in which pressures can be as low as 0.001 bar, can prove useful. Many vitamins and pharmaceuticals can be processed without deterioration of quality. It is now common to use mechanical vacuum pumps with proper condensers preceding the pump. [Pg.415]

The advantage of this approach is that it uses data that is both available and accurate. Such boiling points are obtained during processes of purification, so the given data often refers to a pure substance and this constitutes sound data. [Pg.41]


See other pages where Purification boiling point is mentioned: [Pg.41]    [Pg.48]    [Pg.145]    [Pg.172]    [Pg.24]    [Pg.88]    [Pg.279]    [Pg.11]    [Pg.12]    [Pg.237]    [Pg.487]    [Pg.421]    [Pg.54]    [Pg.1449]    [Pg.9]    [Pg.16]    [Pg.60]    [Pg.61]    [Pg.80]    [Pg.173]    [Pg.615]    [Pg.234]    [Pg.1449]    [Pg.12]    [Pg.699]    [Pg.284]    [Pg.132]    [Pg.237]    [Pg.5]    [Pg.145]    [Pg.172]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Purification, liquids boiling points

© 2024 chempedia.info