Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pulsed beam characterization

When considering a pulsed beam characterized by a pulse width f (ns) and a period j (where/is the repetition rate, s ), the duty cycle (d), defined by the time fraction during which the beam is on, is given by the following equation ... [Pg.593]

In modeling the SHG performanee of the bulk nonlinear optical crystals, we have assumed the incident fundamental pulses are characterized by a hyperbolic secant temporal profile, and therefore r = rg (FWHM)/l.76. For the case of KNhOs, the maximum optical-to-optical SHG efficiency achieved was 30%. The corresponding value of L/L, under these conditions, with a GVM parameter, 1.2 ps/mm, is L/L = 30. The values of beam... [Pg.217]

A half-wave plate (HWP) and a polarizer (GLP) are positioned after the oscillator and are used to variably attenuate the laser output power to the desired input power required by specific experiments. Using a beam sampler (M ), a small portion of the laser beam is directed into a beam diagnostic unit (AC). In it, the laser pulse is characterized both in the time and frequency domains by employing an autocorrelator and a spectrometer. The laser beam is then expanded to match or overfill the back aperture of the objective lens. This is accomphshed using two positive lenses with the appropriate focal lengths. At the focal point of the first lens, a pinhole (SF) is carefully positioned to spatially filter the laser beam. An electro-mechanical shutter (S), used to control laser exposure times in the sample, is placed before this assembly. If exposure times shorter that a few milliseconds are required, faster response shutters such as acousto- or electro-optic modulators can be used. [Pg.117]

Rapid progress has been made in the preceding five years in the production and characterization of metal cluster beams. Details of the technology of production and analysis can be found in review articles [1-3]. Pulsed beams of metal clusters are obtained by expanding and condensing in a high-pressure helium stream metal vapors produced by pulsed laser vaporization. Reactant molecules can be introduced into the gas phase along the pathway of metal cluster beams. The nuclearity of the clusters and the products of the reaction between clusters and added molecules can be identified by mass spectroscopy. [Pg.144]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

The characterization of the laser pulse widths can be done with commercial autocorrelators or by a variety of other methods that can be found in the ultrafast laser literature. " For example, we have found it convenient to find time zero delay between the pump and probe laser beams in picosecond TR experiments by using fluorescence depletion of trans-stilbene. In this method, the time zero was ascertained by varying the optical delay between the pump and probe beams to a position where the depletion of the stilbene fluorescence was halfway to the maximum fluorescence depletion by the probe laser. The accuracy of the time zero measurement was estimated to be +0.5ps for 1.5ps laser pulses. A typical cross correlation time between the pump and probe pulses can also be measured by the fluorescence depletion method. [Pg.134]

A family of vacuum-tube MMW sources is based on the propagation of an electron beam through a so-called slow-wave or periodic structure. Radiation propagates on the slow-wave structure at the speed of the electron beam, allowing the beam and radiation field to interact. Devices in this category are the traveling-wave tube (TWT), the backward-wave oscillator (BWO) and the extended interaction oscillator (EIO) klystron. TWTs are characterized by wide bandwidths and intermediate power output. These devices operate well at frequencies up to 100 GHz. BWOs, so called because the radiation within the vacuum tube travels in a direction opposite to that of the electron beam, have very wide bandwidths and low output powers. These sources operate at frequencies up to 1.3 THz and are extensively used in THZ spectroscopic applications [10] [11] [12]. The EIO is a high-power, narrow band tube that has an output power of 1 kW at 95 GHz and about 100 W at 230 GHz. It is available in both oscillator and amplifier, CW and pulsed versions. This source has been extensively used in MMW radar applications with some success [13]. [Pg.248]

Photolysis and pulse radiolysis are powerful methods for producing sizeable amounts of reactive transients whose physical and chemical properties may be examined. Structural information on the transient and the characterization of early (rapid) steps in an overall reaction can be very helpful for understanding the overall mechanism in a complex reaction. Chemical equilibria may be disturbed by photolysis or radiolysis since one of the components may be most affected by the beam and its concentration thereby changed. The original equilibrium will be reestablished on removing the disturbance and the associated change can be examined just as in the relaxation methods. The approach has been more effectively used in laser photolysis and since very short perturbations are possible the rates associated with very labile equilibria may be measured. [Pg.145]

Chen, B.-C., and Lim, S.-H. 2007. Characterization of a broadband pulse for phase controlled multiphoton microscopy by single beam SPIDER. Opt. Lett. 32(16) 2411-13. [Pg.193]

In principle, absorption spectroscopy techniques can be used to characterize radicals. The key issues are the sensitivity of the method, the concentrations of radicals that are produced, and the molar absorptivities of the radicals. High-energy electron beams in pulse radiolysis and ultraviolet-visible (UV-vis) light from lasers can produce relatively high radical concentrations in the 1-10 x 10 M range, and UV-vis spectroscopy is possible with sensitive photomultipliers. A compilation of absorption spectra for radicals contains many examples. Infrared (IR) spectroscopy can be used for select cases, such as carbonyl-containing radicals, but it is less useful than UV-vis spectroscopy. Time-resolved absorption spectroscopy is used for direct kinetic smdies. Dynamic ESR spectroscopy also can be employed for kinetic studies, and this was the most important kinetic method available for reactions... [Pg.133]

Samples of 1 (200 mg) were sealed in evacuated Pyrex ampoules (inner diameter 4 mm) and immersed in a 500-mL Pyrex beaker filled with ice and water in such a way that no ice blocked the laser beam. The beam of an excimer laser (Lambda Physics, EMC 201 XeCl 17 ns pulses 50 Hz repetition rate 3 h X = 308 nm) was positioned vertically using two dielectric mirrors and focused to the desired intensity by a quartz-lens with a focal length of 20 cm. For low intensity irradiations, the ampoules were placed in front of a mercury arc at a distance of 5 cm. The product ratio depended on the light intensity. The compounds 1, 2, 3 and 4 were separated by gas chromatography or HPLC on RP18 and spectroscopically characterized after 93-97% conversion to 3 and 4. [Pg.211]


See other pages where Pulsed beam characterization is mentioned: [Pg.594]    [Pg.594]    [Pg.72]    [Pg.240]    [Pg.262]    [Pg.20]    [Pg.1986]    [Pg.2115]    [Pg.397]    [Pg.426]    [Pg.342]    [Pg.112]    [Pg.123]    [Pg.625]    [Pg.170]    [Pg.197]    [Pg.354]    [Pg.530]    [Pg.47]    [Pg.63]    [Pg.191]    [Pg.233]    [Pg.239]    [Pg.495]    [Pg.112]    [Pg.908]    [Pg.450]    [Pg.25]    [Pg.543]    [Pg.305]    [Pg.215]    [Pg.397]    [Pg.124]    [Pg.60]    [Pg.293]    [Pg.301]    [Pg.343]    [Pg.346]    [Pg.247]    [Pg.251]   
See also in sourсe #XX -- [ Pg.593 , Pg.594 ]




SEARCH



© 2024 chempedia.info