Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pulsed fundamentals

Ultrasonic techniques are an obvious choice for measuring the wall thickness. In the pulse-echo method times between echoes from the outer and inner surface of the tube can be measured and the wall thickness may be calculated, when the ultrasonic velocity of the material is known. In the prototype a computer should capture the measuring data as well as calculate and pre.sent the results. First some fundamental questions was considered and verified by experiments concerning ultrasonic technique (Table I), equipment, transducers and demands for guidance of the tube. [Pg.895]

With broad-band pulses, pumping and probing processes become more complicated. With a broad-bandwidth pulse it is easy to drive fundamental and overtone transitions simultaneously, generating a complicated population distribution which depends on details of pulse stmcture [75], Broad-band probe pulses may be unable to distinguish between fundamental and overtone transitions. For example in IR-Raman experiments with broad-band probe pulses, excitation of the first overtone of a transition appears as a fundamental excitation with twice the intensity, and excitation of a combination band Q -t or appears as excitation of the two fundamentals 1761. [Pg.3040]

It is important to understand the fundamental electrochemistries of analytes before attempting electro analysis. The usual approach is to perform electroanalyses so quickly that kinetic events do not have time to occur before charge-transfer (electrolysis) has provided a response that is unequivocally related to the concentration of the analyte. Pulse techniques figure prominently into this principle. See Reference 10 for a highly useful approach to this problem. [Pg.55]

The wave form associated with the fundamental frequencies is primarily the result of the pulse produced by the stroke of the compressor piston, which is, in turn, modified by the action of the intake or discharge valve. In most cases the wave form is shaped by valve action and is partially modified by the characteristics of the piping downstream of the valve. The chief disturbing frequencies lie in the range of 4— 100 cycles/sec. [Pg.597]

The layout of the experimental set-up is shown in Figure 8-3. The laser source was a Ti sapphire laser system with chirped pulse amplification, which provided 140 fs pulses at 780 nm and 700 pJ energy at a repetition rate of 1 kHz. The excitation pulses at 390 nm were generated by the second harmonic of the fundamental beam in a 1-nun-thick LiB305 crystal. The pump beam was focused to a spot size of 80 pm and the excitation energy density was between 0.3 and 12 ntJ/crn2 per pulse. Pump-... [Pg.447]

A Q-switched Nd YAG laser (7 ns pulse duration, Quanta-Ray DRC-1A) operated at 10 Hz was used as a light source. The 1064 nm fundamental was frequency doubled to 532 nm for some experiments. In all experiments reported here a geometry was used which focused the laser beam in front of the entrance window of the sample cell such that the laser beam was diverging as it passed through the sample cell. In this geometry the laser beam was about 3 mm in diameter at the region viewed by the light detection system. [Pg.162]

The new interface model and the concept for the carbon black reinforcement proposed by the author fundamentally combine the structure of the carbon gel (bound mbber) with the mechanical behavior of the filled system, based on the stress analysis (FEM). As shown in Figure 18.6, the new model has a double-layer stmcture of bound rubber, consisting of the inner polymer layer of the glassy state (glassy hard or GH layer) and the outer polymer layer (sticky hard or SH layer). Molecular motion is strictly constrained in the GH layer and considerably constrained in the SH layer compared with unfilled rubber vulcanizate. Figure 18.7 is the more detailed representation to show molecular packing in both layers according to their molecular mobility estimated from the pulsed-NMR measurement. [Pg.522]

Advances in experimental techniques, including pulsed-field gradient NMR, and theoretical methods, including volume averaging, macrotransport, and variational methods, that may lead to the resolution of a number of the fundamental issues in gel electrophoresis and to improvements in the practical application of electrotransport in polymeric media... [Pg.528]

In the interdisciplinary field of biophysics and biotechnology, the bioeffects of electric field have received considerable interest for both fundamental studies on these interaction mechanisms and potential application. However, the effects of pulsed electric field (PEF) on secondary metabolism in plant cell cultures and fermentation processes have been unknown. Therefore, it would be very interesting to find out whether PEF could be used as a new tool for stimulating secondary metabolism in plant cell cultures for potential application to the value-added plant-specific secondary metabolite production. Furthermore, if the PEF permeabilization and elicitation are discovered in a cell culture system, the combination of... [Pg.91]

This chapter discusses the apphcation of femtosecond lasers to the study of the dynamics of molecular motion, and attempts to portray how a synergic combination of theory and experiment enables the interaction of matter with extremely short bursts of light, and the ultrafast processes that subsequently occur, to be understood in terms of fundamental quantum theory. This is illustrated through consideration of a hierarchy of laser-induced events in molecules in the gas phase and in clusters. A speculative conclusion forecasts developments in new laser techniques, highlighting how the exploitation of ever shorter laser pulses would permit the study and possible manipulation of the nuclear and electronic dynamics in molecules. [Pg.1]

For studies in molecular physics, several characteristics of ultrafast laser pulses are of crucial importance. A fundamental consequence of the short duration of femtosecond laser pulses is that they are not truly monochromatic. This is usually considered one of the defining characteristics of laser radiation, but it is only true for laser radiation with pulse durations of a nanosecond (0.000 000 001s, or a million femtoseconds) or longer. Because the duration of a femtosecond pulse is so precisely known, the time-energy uncertainty principle of quantum mechanics imposes an inherent imprecision in its frequency, or colour. Femtosecond pulses must also be coherent, that is the peaks of the waves at different frequencies must come into periodic alignment to construct the overall pulse shape and intensity. The result is that femtosecond laser pulses are built from a range of frequencies the shorter the pulse, the greater the number of frequencies that it supports, and vice versa. [Pg.6]

The choice of the pulse sequence to use is of fundamental importance. We must decide carefully what information is required, and choose the right experiment to provide it. Although hundreds of 2D pulse sequences are now available for various experiments, only some have proven themselves to be of general utility. Only such proven techniques should be chosen to solve structural problems. [Pg.156]

In order to control chemical dynamics, it is crucial to control wave packet motions. Here we consider efficient electronic excitation of wave packet by ultrashort broadband laser pulses, which has fundamental importance in... [Pg.161]

Raman excitation. and I2s are the high-frequency and low-frequency components of the pump light pulse. A probe pulse of frequency 12 interacts with the coherence to present the optical response of the fundamental frequency 12 + C0fsl2. (c) Fourth-order coherent Raman scattering, the optical response of the second harmonic frequency 212 + co 2I2 is modulated by the vibrational coherence. [Pg.104]

Experimental limitations initially limited the types of molecular systems that could be studied by TRIR spectroscopy. The main obstacles were the lack of readily tunable intense IR sources and sensitive fast IR detectors. Early TRIR work focused on gas phase studies because long pathlengths and/or multipass cells could be used without interference from solvent IR bands. Pimentel and co-workers first developed a rapid scan dispersive IR spectrometer (using a carbon arc broadband IR source) with time and spectral resolution on the order of 10 ps and 1 cm , respectively, and reported the gas phase IR spectra of a number of fundamental organic intermediates (e.g., CH3, CD3, and Cp2). Subsequent gas phase approaches with improved time and spectral resolution took advantage of pulsed IR sources. [Pg.184]

This chapter reviews all aspects of the 2D NMR of relaxation and diffusion. Firstly, numerous pulse sequences for the 2D NMR and the associated spin dynamics will be discussed. One of the key aspects is the FLI algorithm and its fundamental principle will be described. Applications of the technique will then be... [Pg.164]

The principles behind MAP liquid-phase and gas-phase extractions are fundamentally similar and rely on the use of microwaves to selectively apply energy to a matrix rather than to the environment surrounding it. MAP gas-phase extractions (MAP-HS) give better sensitivity than the conventional static headspace extraction method. MAP-HS may also be applied in dynamic applications. This allows the application of a prolonged, low-power irradiation, or of a multi-pulse irradiation of the sample, thus providing a means to extract all of the volatile analytes from the matrix [477]. [Pg.116]

Depending on how the secondary magnetic field is applied, there are two fundamentally different types of spectrometers, namely, continuous wave (CW) and pulse Fourier transform (PFT) spectrometers. The older continuous wave NMR spectrometers (the equivalent of dispersive spectrometry) were operated in one of two modes (i) fixed magnetic field strength and frequency (vi) sweeping of Bi irradiation or (ii) fixed irradiation frequency and variable field strength. In this way, when the resonance condition is reached for a particular type of nuclei (vi = vo), the energy is absorbed and... [Pg.325]


See other pages where Pulsed fundamentals is mentioned: [Pg.407]    [Pg.407]    [Pg.265]    [Pg.1972]    [Pg.1974]    [Pg.2953]    [Pg.3039]    [Pg.189]    [Pg.338]    [Pg.670]    [Pg.241]    [Pg.242]    [Pg.84]    [Pg.72]    [Pg.62]    [Pg.267]    [Pg.344]    [Pg.203]    [Pg.529]    [Pg.133]    [Pg.11]    [Pg.77]    [Pg.84]    [Pg.87]    [Pg.111]    [Pg.7]    [Pg.282]    [Pg.69]    [Pg.675]    [Pg.130]    [Pg.17]    [Pg.155]    [Pg.168]    [Pg.148]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



© 2024 chempedia.info