Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pulse sequence heteronuclear multiple

The INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) experiment [6, 7] was the first broadband pulsed experiment for polarization transfer between heteronuclei, and has been extensively used for sensitivity enhancement and for spectral editing. For spectral editing purposes in carbon-13 NMR, more recent experiments such as DEPT, SEMUT [8] and their various enhancements [9] are usually preferable, but because of its brevity and simplicity INEPT remains the method of choice for many applications in sensitivity enhancement, and as a building block in complex pulse sequences with multiple polarization transfer steps. The potential utility of INEPT in inverse mode experiments, in which polarization is transferred from a low magnetogyric ratio nucleus to protons, was recognized quite early [10]. The principal advantage of polarization transfer over methods such as heteronuclear spin echo difference spectroscopy is the scope it offers for presaturation of the unwanted proton signals, which allows clean spec-... [Pg.94]

Even in the absence of relaxation, Hartmann-Hahn transfer depends on a large number of parameters pulse sequence parameters (multiple-pulse sequence, irradiation frequency, average rf power, etc.) and spin system parameters (size of the spin system, chemical shifts, /-coupling constants). For most multiple-pulse sequences, these parameters may be destilled into effective coupling tensors, which completely determine the transfer of polarization and coherence in the spin system. This provides a general classification scheme for homo- and heteronuclear Hartmann-Hahn experiments and allows one to characterize the transfer properties of related... [Pg.105]

HC HMQC (heteronuclear multiple quantum coherence) and HC HSQC (heteronuclear single quantum coherence) are the acronyms of the pulse sequences used for inverse carbon-proton shift correlations. These sensitive inverse experiments detect one-bond carbon-proton connectivities within some minutes instead of some hours as required for CH COSY as demonstrated by an HC HSQC experiment with a-pinene in Fig. 2.15. [Pg.36]

Figure 7.14 Pulse sequence for the HMBCS (heteronuclear multiple-bond correlation, selective) experiment, which uses advantageously a 270° Gaussian pulse for exciting the carbonyl resonances. It is also called the semisoft inverse COLOC. (Reprinted from Mag. Reson. Chem. 29, H. Kessler et al., 527, copyright (1991), with permission from John Wiley and Sons Limited, Baffins Lane, Chichester, Sussex P019 lUD, England.)... Figure 7.14 Pulse sequence for the HMBCS (heteronuclear multiple-bond correlation, selective) experiment, which uses advantageously a 270° Gaussian pulse for exciting the carbonyl resonances. It is also called the semisoft inverse COLOC. (Reprinted from Mag. Reson. Chem. 29, H. Kessler et al., 527, copyright (1991), with permission from John Wiley and Sons Limited, Baffins Lane, Chichester, Sussex P019 lUD, England.)...
To be fair, we must point out that this type of experiment is extremely sensitive to the parameters chosen. Various pulse sequences are available, including the original COLOC (Correlation by means of Long range Coupling) as well as experiments variously referred to as HMBC (Heteronuclear Multiple-Bond Correlation) and HMQC (Heteronuclear Multiple-Quantum Correlation). Depending on the parameters chosen, it is often not possible to suppress correlations due to one-bond coupling ... [Pg.45]

J splittings cannot be directly resolved. In addition to the obvious advantage of providing a map of chemical bonds between the spins, /-based transfers do not require spin-locking and are not disturbed by molecular motions. The major drawback of polarization transfer through J coupling is that the delays involved in the pulse sequences, such as insensitive nuclei enhanced by polarization transfer (INEPT) [233] or heteronuclear multiple-quantum coherence (HMQC)... [Pg.171]

Fig. 10.14. Gradient-enhanced HMQC pulse sequence described in 1991 by Hurd and John derived from the earlier non-gradient experiment of Bax and Subramanian. For 1H-13C heteronuclear shift correlation, the gradient ratio, G1 G2 G3 should be 2 2 1 or a comparable ratio. The pulses sequence creates heteronuclear multiple quantum of orders zero and two with the application of the 90° 13C pulse. The multiple quantum coherence evolves during the first half of ti. The 180° proton pulse midway through the evolution period decouples proton chemical shift evolution and interchanges the zero and double quantum coherence terms. Antiphase proton magnetization is created by the second 90° 13C pulse that is refocused during the interval A prior to detection and the application of broadband X-decoupling. Fig. 10.14. Gradient-enhanced HMQC pulse sequence described in 1991 by Hurd and John derived from the earlier non-gradient experiment of Bax and Subramanian. For 1H-13C heteronuclear shift correlation, the gradient ratio, G1 G2 G3 should be 2 2 1 or a comparable ratio. The pulses sequence creates heteronuclear multiple quantum of orders zero and two with the application of the 90° 13C pulse. The multiple quantum coherence evolves during the first half of ti. The 180° proton pulse midway through the evolution period decouples proton chemical shift evolution and interchanges the zero and double quantum coherence terms. Antiphase proton magnetization is created by the second 90° 13C pulse that is refocused during the interval A prior to detection and the application of broadband X-decoupling.
Fig. 10.15. Pulse sequence for the multiplicity-edited gradient HSQC experiment. Heteronuclear single quantum coherence is created by the first INEPT step within the pulse sequence, followed by the evolution period, t . Following evolution, the heteronuclear single quantum coherence is reconverted to observable proton magnetization by the reverse INEPT step. The simultaneous 180° XH and 13C pulses flanked by the delays, A = l/2( 1 edits magnetization inverting signals for methylene resonances, while leaving methine and methyl signals with positive phase (Fig. 16A). Eliminating this pulse sequence element affords a heteronuclear shift correlation experiment in which all resonances have the same phase (Fig. 16B). Fig. 10.15. Pulse sequence for the multiplicity-edited gradient HSQC experiment. Heteronuclear single quantum coherence is created by the first INEPT step within the pulse sequence, followed by the evolution period, t . Following evolution, the heteronuclear single quantum coherence is reconverted to observable proton magnetization by the reverse INEPT step. The simultaneous 180° XH and 13C pulses flanked by the delays, A = l/2( 1 edits magnetization inverting signals for methylene resonances, while leaving methine and methyl signals with positive phase (Fig. 16A). Eliminating this pulse sequence element affords a heteronuclear shift correlation experiment in which all resonances have the same phase (Fig. 16B).
Using strychnine (1) as a model compound, a pair of HSQC spectra are shown in Fig. 10.16. The top panel shows the HSQC spectrum of strychnine without multiplicity editing. All resonances have positive phase. The pulse sequence used is that shown in Fig. 10.15 with the pulse sequence operator enclosed in the box eliminated. In contrast, the multiplicity-edited variant of the experiment is shown in the bottom panel. The pulse sequence operator is comprised of a pair of 180° pulses simultaneously applied to both H and 13C. These pulses are flanked by the delays, A = l/2(xJcii), which invert the magnetization for the methylene signals (red contours in Fig. 10.16B), while leaving methine and methyl resonances (positive phase, black contours) unaffected. Other less commonly used direct heteronuclear shift correlation experiments have been described in the literature [47]. [Pg.294]

Fig. 1. Pulse sequences modified for multiple selective excitation. I ID TOCSY, II het-eronuclear ID NOE, III ID INADEQUATE, IVa heteronuclear ID COSY (optimized to detect Jch), IVb heteronuclear ID COSY (optimized to detect "Jch), V 2D TOCSY-COSY, Via 2D HMBC (designed to detect heteronuclear long-range couplings "Jch only), VIh 2D HMBC (extended pulse sequence to detect both heteronuclear long-range "Jch and... Fig. 1. Pulse sequences modified for multiple selective excitation. I ID TOCSY, II het-eronuclear ID NOE, III ID INADEQUATE, IVa heteronuclear ID COSY (optimized to detect Jch), IVb heteronuclear ID COSY (optimized to detect "Jch), V 2D TOCSY-COSY, Via 2D HMBC (designed to detect heteronuclear long-range couplings "Jch only), VIh 2D HMBC (extended pulse sequence to detect both heteronuclear long-range "Jch and...
We have implemented the principle of multiple selective excitation (pulse sequence II in fig. 1) thereby replacing the low-power CW irradiation in the preparation period of the basic ID experiment by a series of selective 180° pulses. The whole series of selective pulses at frequencies /i, /2, , / is applied for several times in the NOE build-up period to achieve sequential saturation of the selected protons. Compared with the basic heteronuclear ID experiment, in this new variant the sensitivity is improved by the combined application of sequential, selective pulses and the more efficient data accumulation scheme. Quantitation of NOEs is no longer straightforward since neither pure steady-state nor pure transient effects are measured and since cross-relaxation in a multi-spin system after perturbation of a single proton (as in the basic experiment) or of several protons (as in the proposed variant) differs. These attributes make this modified experiment most suitable for the qualitative recognition of heteronuclear dipole-dipole interactions rather than for a quantitative evaluation of the corresponding effects. [Pg.32]

B This pulse sequence, the ID DEFT (Distorsionless Enhancement by Polarization Transfer) experiment, was developed to measure carbon chemical shifts with enhanced sensitivity and to determine at the same time their multiplicities, to differentiate between CH, CH, CH and C. It is a heteronuclear multiple pulse experiment with pulses applied to perturb both carbon and proton spins. Il consists of a preparation, a mixing (used to transfer proton polarization to the directly bound carbons) and a detection period. [Pg.45]

The development of carbon-13 NMR during the last eight years has been characterized by a continual increase in the sensitivity and quality of spectra. A reduction in measuring time - equivalent to an enhancement in sensitivity has been achieved mainly by cryomagnet technology. The efficiency with which NMR information can be obtained has been substantially improved by new computer-controllable pulse sequences for one-and two-dimensional NMR experiments. A selection of these new methods, in particular, those used for multiplicity analysis and homo- or heteronuclear shift correlations, is presented in chapter 2 of this edition. [Pg.523]

Heterocorrelations can be detected both in direct and reverse modes. In the latter mode, dramatic enhancements of sensitivity can be achieved owing to the larger sensitivity of protons with respect to heteronuclei. In the most common heterocorrelation pulse sequences for reverse detection, called heteronuclear multiple quantum coherence (HMQC) (Fig. 8.2G) [25,26], H-I3C MQ (multiple quantum) coherence is generated by first applying a 90° pulse on protons and, after a time t chosen equal to 1/2 J[j, by applying a 90° pulse on carbon (Fig. 8.19). [Pg.290]

UNDERSTANDING THE HETERONUCLEAR MULTIPLE-BOND CORRELATION (HMBC) PULSE SEQUENCE... [Pg.535]

Other strategies that show great promise in reducing NMR acquisition time utilise methods to obtain multiple sets of data from one experiment through a concept known as time-shared evolution. An example of this process that should find utility in natural products elucidation was demonstrated by a pulse sequence called CN-HMBC.93 Traditionally, a separate 13C-HMBC and 15N-HMBC were acquired independently. However, the CN-HMBC allows both 13C- and 15N-HMBC spectra to be obtained simultaneously. By acquiring both data sets simultaneously, an effective 50% time reduction can be achieved.93 This approach has also been demonstrated for a sensitivity-enhanced 2D HSQC-TOCSY (heteronuclear multiple bond correlation total correlation spectroscopy) and HSQMBC (heteronuclear single quantum... [Pg.288]

FIGURE 12.10 Pulse sequence for the heteronuclear multiple quantum coherence experiment. See text for discussion of the state of the spin system at the times indicated. [Pg.337]

FIGURE 12.11 Pulse sequence for the heteronuclear multiple bond correlation experiment. A = 1 /(21/) and A = l/(2 7), where [J and "J are spin couplings between I and S through one and n bonds, respectively.The first S pulse, marked 90, is cycled through + x and —X. See text for discussion of the state of the spin system at the times indicated. [Pg.338]

FIGURE 12.16 Pulse sequence for the triple resonance 3D NMR experiment HNCO. H and N denote H and 15N, C denotes 13C=0, and K denotes 13C . Pulses at times 1, 2, and 3 constitute an INEPT sequence that transfers coherence from H to. V, where it precesses during q. Pulses at times 6, 7, and 8 represent an HMQC sequence that creates multiple quantum coherence in C (where it precesses during and transfers coherence back to N. Pulses 10 and 11 are an inverse INEPT sequence that transfers coherence back to H for detection during f3.The other 180° pulses refocus heteronuclear spin couplings. Note that coherence is not transferred to spin K. [Pg.344]


See other pages where Pulse sequence heteronuclear multiple is mentioned: [Pg.49]    [Pg.49]    [Pg.47]    [Pg.48]    [Pg.253]    [Pg.271]    [Pg.273]    [Pg.271]    [Pg.78]    [Pg.179]    [Pg.301]    [Pg.36]    [Pg.39]    [Pg.42]    [Pg.156]    [Pg.66]    [Pg.10]    [Pg.72]    [Pg.56]    [Pg.64]    [Pg.18]    [Pg.22]    [Pg.214]    [Pg.267]    [Pg.66]    [Pg.198]    [Pg.6167]    [Pg.6198]   


SEARCH



Multiple heteronuclear

Multiple pulse sequence

Pulse sequenc

Pulse sequence

© 2024 chempedia.info