Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Total through-bond-correlation spectroscopy

E. H. Hardy, A. Detken and B. H. Meier, Fast-NMR total through-bond correlation spectroscopy using adiabatic pulses. J. Magn. Reson., 2003, 165. 208-218. [Pg.289]

Mixing sequences for total through-bond correlation spectroscopy in solids (TOBSY) have been developed for fast MAS experiments. Possible sequences with the desired Hamiltonian (the homonuclear isotropic J interaction) have been identified using lowest order average Hamiltonian theory combined with numerical simulations as a function of the MAS frequency. An experimental TOBSY spectrum of a uniformly C-labelled decapeptide at 20 kHz MAS has been obtained using one of the new sequences. The spectrum allows to assign the resonances to the respective spin systems. [Pg.231]

The total correlation spectroscopy (TOCSY) techniques, which come in both 1- and 2-D versions, offer an alternative to 1-D spin decoupling and COSY methods for establishing through-bond connectivities. The important difference between the two is that TOCSY methods allow easy identification of isolated spin systems. For example, using our trusty morpholine compound once more, you can see that it is possible to identify the -CH2-CH2- spin system between the nitrogen and the oxygen atoms, these hetero-atoms, effectively isolating the protons from all others in the molecule. [Pg.116]

H is particularly important in NMR experiments because of its high sensitivity and natural abundance. For macromolecules, 1H NMR spectra can become quite complicated. Even a small protein has hundreds of 1H atoms, typically resulting in a one-dimensional NMR spectrum too complex for analysis. Structural analysis of proteins became possible with the advent of two-dimensional NMR techniques (Fig. 3). These methods allow measurement of distance-dependent coupling of nuclear spins in nearby atoms through space (the nuclear Overhauser effect (NOE), in a method dubbed NOESY) or the coupling of nuclear spins in atoms connected by covalent bonds (total correlation spectroscopy, or TOCSY). [Pg.138]

Other strategies that show great promise in reducing NMR acquisition time utilise methods to obtain multiple sets of data from one experiment through a concept known as time-shared evolution. An example of this process that should find utility in natural products elucidation was demonstrated by a pulse sequence called CN-HMBC.93 Traditionally, a separate 13C-HMBC and 15N-HMBC were acquired independently. However, the CN-HMBC allows both 13C- and 15N-HMBC spectra to be obtained simultaneously. By acquiring both data sets simultaneously, an effective 50% time reduction can be achieved.93 This approach has also been demonstrated for a sensitivity-enhanced 2D HSQC-TOCSY (heteronuclear multiple bond correlation total correlation spectroscopy) and HSQMBC (heteronuclear single quantum... [Pg.288]

TOCSY (Total Correlation Spectroscopy) is another important homonuclear 2D correlation experiment where correlations arise due to the presence of homonuclear scalar coupling.In the standard COSY experiment, crosspeaks appear for spins in which the scalar coupling occurs over typically two to four bonds. In the TOCSY experiment crosspeaks can appear for spins separated by many more bonds as long as they are part of a contiguous network of coupled spins. The correlations are effected by the application of a series of low-power rf pulses termed the spin-lock. The duration of the spin-lock period determines the extent to which the correlations are propagated through the spin system. The TOCSY experiment is a useful complement to the COSY methods for the elucidation of complex structures. [Pg.3446]

The most commonly used 2D nmr technique applied to through-bond interactions is termed (7 ) correlated spectroscopy (COSY), others are total correlation spectroscopy (TOCSY), which allows somewhat longer-range through-bond connectivities to be observed than with COSY, spin echo coherence transfer spectroscopy (SECSY), relayed coherence transfer spectroscopy (RELAY), double quantum spectroscopy (DQNMR) and homonuclear Hartmann-Hahn spectroscopy (HOHAHA). The most commonly used 2D nmr technique applied to through-space interactions is termed nuclear Overhauser effect spectroscopy (NOESY) also used is the closely related rotating-frame NOESY (ROE-SY). [Pg.446]


See other pages where Total through-bond-correlation spectroscopy is mentioned: [Pg.56]    [Pg.9]    [Pg.252]    [Pg.87]    [Pg.56]    [Pg.9]    [Pg.252]    [Pg.87]    [Pg.6213]    [Pg.318]    [Pg.6212]    [Pg.156]    [Pg.529]    [Pg.586]    [Pg.180]    [Pg.586]    [Pg.903]    [Pg.109]    [Pg.138]    [Pg.386]    [Pg.99]    [Pg.490]    [Pg.724]    [Pg.267]    [Pg.78]    [Pg.363]    [Pg.358]   


SEARCH



Bond correlation

Bond correlation spectroscopy

Correlated spectroscopy

Correlation spectroscopy

TOTAL Correlations

Through-bond

Total correlated spectroscopy

© 2024 chempedia.info