Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Provitamin activity

PApo-8 -carotenal. The specifications of this colorant. (38) were discussed earlier. P-Apo-8 -carotenal has provitamin activity with 1 g of the colorant equal to 1,200,000 lU of vitamin A. Like all crystalline carotenoids, it slowly decomposes ia air through oxidatioa of its coajugated double boads and thus must be stored ia sealed coataiaers uader an atmosphere of iaert gas, preferably under refrigeration. Also like other carotenoids P-apo-8 -carotenal readily isomerizes to a mixture of its cis and trans stereoisomers when its solutions are heated to about 60°C or exposed to ultraviolet... [Pg.448]

Hazardous Decomp. Prods. Heated to decomp., emits acrid smoke and irritating fumes Storage Store in sealed containers under inert gas and preferably refrigeration Uses Colorant for foods, pigmentation of egg yolks, chicken skin, beverages Features Provitamin activity (1,200,000 lU vitamin A/g)... [Pg.330]

Ref. 2. Vitamin A is reported as retinol [68-26-8] equivalents/L. RE = 1 /ig of all trans-i.etSio 6 )lg of all /ra j -(3-carotene, and 12 )lg of other provitamin A cartenoids, with older definitions giving 3.33 lU vitamin A from retinol and 10 lU vitamin A activity from -carotene. [Pg.351]

An important function of certain carotenoids is their provitamin A activity. Vitamin A may be considered as having the stmcture of half of the P-carotene molecule with a molecule of water added at the end position. In general, all carotenoids containing a single unsubstituted P carotene half have provitamin A activity, but only about half the activity of P carotene. Provitamin A compounds are converted to Vitamin A by an oxidative enzyme system present in the intestinal mucosa of animals and humans. This conversion apparendy does not occur in plants (see Vitamins, VITAMIN a). [Pg.431]

Many carotenoids function in humans as vitamin A precursors however, not all carotenoids have provitamin A activity (Table 3). Of the biologically active carotenoids, -carotene has the greatest activity. Despite the fact that theoretically one molecule of -carotene is a biological source of two molecules of vitamin A, this relationship is not observed and 6 p.g -carotene is equivalent to 1 p. vitamin A. Although -carotene and vitamin A have complementary activities, they caimot totally replace each other. Because the conversion of -carotene to vitamin A is highly regulated, toxic quantities of vitamin A cannot accumulate and -carotene can be considered as a safe form of vitamin A (8). [Pg.103]

Animals cannot synthesize vitamin A-active compounds and necessary quantities are obtained by ingestion of vitamin A or by consumption of appropriate provitamin A compounds such as P-carotene. Carotenoids are manufactured exclusively by plants and photosynthetic bacteria. Until the discovery of vitamin A in the purple bacterium Halobacterium halobium in the 1970s, vitamin A was thought to be confined to only the animal kingdom (56). Table 4 Hsts RDA and U.S. RDA for vitamin A (67). [Pg.103]

Vitamin (cholecalcifetol calciol), (5Z,7E)-(33)-9,10-seco-5,7,10(19) cholestatriene-3-ol (4), is the naturally occurring active material found ki all animals. It is produced ki the skin by the kradiation of stored 7-dehydrocholesterol (provitamin E) ), cholesta-5,7-diene-3B-ol (3). [Pg.124]

The observation that the uv spectmm of provitamin D changed with uv inradiation and also produced antirachitic activity led to the conclusion that vitamin D was derived from the provitamin. Windaus found the vitamin D2 formula to be isomeric with the provitamins. [Pg.125]

P-Hydroxy steroids which contain the 5,7-diene system and can be activated with uv light to produce vitamin D compounds are called provitamins. The two most important provitamins are ergosterol (1) and 7-dehydrocholesterol (3). They are produced in plants and animals, respectively, and 7-dehydrocholesterol is produced synthetically on a commercial scale. Small amounts of hydroxylated detivatives of the provitamins have been synthesized in efforts to prepare the metaboHtes of vitamin D, but these products do not occur naturally. The provitamins do not possess physiological activities, with the exception that provitamin D is found in the skin of animals and acts as a precursor to vitamin D, and synthetic dihydroxalated... [Pg.126]

Vitamin A (retinol), present in carnivorous diets, and the provitamin (P-carotene), found in plants, form retinaldehyde, utilized in vision, and retinoic acid, which acts in the control of gene expression. Vitamin D is a steroid prohormone yielding the active hormone derivative calcitriol, which regulates calcium and phosphate metaboUsm. Vitamin D deficiency leads to rickets and osteomalacia. [Pg.497]

In animals, the major function of carotenoids is as a precursor to the formation of vitamin A. Carotenoids with provitamin A activity are essential components of the human diet, and there is considerable evidence that they are absorbed through the diet and often metabohzed into other compounds. Beyond their important role as a source of vitamin A for humans, dietary carotenoids, including those that are not provitamin A carotenoids, have been implicated as protecting against certain forms of cancer and cardiovascular disease. ... [Pg.67]

It is assumed that in order to have vitamin A activity a molecule must have essentially one-half of its structure similar to that of (i-carotene with an added molecule of water at the end of the lateral polyene chain. Thus, P-carotene is a potent provitamin A to which 100% activity is assigned. An unsubstituted p ring with a Cii polyene chain is the minimum requirement for vitamin A activity. y-Car-otene, a-carotene, P-cryptoxanthin, a-cryptoxanthin, and P-carotene-5,6-epoxide aU have single unsubstimted rings. Recently it has been shown that astaxanthin can be converted to zeaxanthin in trout if the fish has sufficient vitamin A. Vitiated astaxanthin was converted to retinol in strips of duodenum or inverted sacks of trout intestines. Astaxanthin, canthaxanthin, and zeaxanthin can be converted to vitamin A and A2 in guppies. ... [Pg.67]

Fruifs and vegetables also contain ofher bioactive substances such as polyphenols (including well-known pigments anthocyanins, flavonols) and non-provitamin A carotenoids (mainly lycopene, lutein, and zeaxanthin) that may have protective effects on chronic diseases. Polyphenols and carotenoids are known to display antioxidant activities, counteracting oxidative alterations in cells. Besides these antioxidant properties, these colored bioactive substances may exert other actions on cell signaling and gene expression. [Pg.127]

In order to exhibit provitamin A activity, the carotenoid molecule must have at least one unsubstituted p-ionone ring and the correct number and position of methyl groups in the polyene chain. Compared to aU-trans P-carotene (100% provitamin A activity), a-carotene, P-cryptoxanthin, and y-carotene show 30 to 50% activity and cis isomers of P-carotene less than 10%. Vitamin A equivalence values of carotenoids from foods have been recently revised to higher ratio numbers (see Table 3.2.2) due to poorer bioavailability of provitamin A carotenoids from foods than previously thought when assessed with more recent and appropriate methods. [Pg.164]

The underlying mechanisms involved in the activities of carotenoid oxidation products are due either to a possible role as precursors of retinoids that would be the active species for positive effects or to their own specific activities. This latter case is illustrated by the activity of non-provitamin A carotenoid oxidation products such as those derived from lycopene. However, biological effects of carotenoid oxidation products other than retinoids are only hypothesized in vivo in humans, which hypothesis has been used as the basic principle to justify in vitro studies of these compounds. [Pg.187]

Heinonen, M.I., Carotenoids and provitamin A activity of carrot (Daucus carota L.) cultivars, J. Agric. Food Chem., 38, 609,1990. [Pg.236]

Ahneida, L.B. and Penteado, M.V.C., Carotenoids with provitamin A activity of carrots Daucus carota L.) consumed in Sao Paulo, Brazil, Rev. Farm. Bioquim. Univ. S. Paulo, 23, 133, 1987. [Pg.236]

Fresh peppers are excellent sources of vitamins A and C, as well as neutral and acidic phenolic compounds (Howard and others 2000). Levels of these can vary by genotype and maturity and are influenced by growing conditions and processing (Mejia and others 1988 Howard and others 1994 Lee and others 1995 Daood and others 1996 Simmone and others 1997 Osuna-Garcia and others 1998 Markus and others 1999 Howard and others 2000). Peppers have been reported to be rich in the provitamin A carotenoids (3-carotene, a-carotene, and (3-cryptoxanthin (Minguez-Mosquera and Hornero-Mendez 1994 Markus and others 1999), as well as xanthophylls (Davies and others 1970 Markus and others 1999). Bell peppers have been shown to exert low antioxidant activity (Al-Saikhan and others 1995 Cao and others 1996 Vinson and others 1998) or may even act as pro-oxidants (Gazzani and others 1998). [Pg.31]


See other pages where Provitamin activity is mentioned: [Pg.11]    [Pg.290]    [Pg.156]    [Pg.11]    [Pg.290]    [Pg.156]    [Pg.415]    [Pg.103]    [Pg.103]    [Pg.103]    [Pg.124]    [Pg.128]    [Pg.258]    [Pg.301]    [Pg.128]    [Pg.219]    [Pg.368]    [Pg.471]    [Pg.268]    [Pg.282]    [Pg.370]    [Pg.381]    [Pg.417]    [Pg.419]    [Pg.424]    [Pg.456]    [Pg.466]    [Pg.26]    [Pg.28]    [Pg.32]    [Pg.182]    [Pg.183]    [Pg.205]    [Pg.208]   
See also in sourсe #XX -- [ Pg.411 ]




SEARCH



Provitamin

Provitamine

© 2024 chempedia.info