Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proteins direct injection

Bergstrom et al. [63] used HPLC for determination of penicillamine in body fluids. Proteins were precipitated from plasma and hemolyzed blood with trichloroacetic acid and metaphosphoric acid, respectively, and, after centrifugation, the supernatant solution was injected into the HPLC system via a 20-pL loop valve. Urine samples were directly injected after dilution with 0.4 M citric acid. Two columns (5 cm x 0.41 cm and 30 cm x 0.41 cm) packed with Zipax SCX (30 pm) were used as the guard and analytical columns, respectively. The mobile phase (2.5 mL/min) was deoxygenated 0.03 M citric acid-0.01 M Na2HP04 buffer, and use was made of an electrochemical detector equipped with a three-electrode thin-layer cell. The method was selective and sensitive for mercapto-compounds. Recoveries of penicillamine averaged 101% from plasma and 107% from urine, with coefficients of variation equal to 3.68 and 4.25%, respectively. The limits of detection for penicillamine were 0.5 pm and 3 pm in plasma and in urine, respectively. This method is selective and sensitive for sulfhydryl compounds. [Pg.146]

Typical protein precipitation procedures use one volume of plasma plus three to six volumes of acetonitrile or methanol (or a mixture) with the internal standard at an appropriate concentration for the assay. Poison et al.102 reported that protein precipitation using acetonitrile eliminates at least 95% of the proteins after filtration or centrifugation, the supernatant can often be directly injected into the HPLC/MS/MS system. Usually this step is performed using 96-well plates that are ideal for semi-automation of sample preparation. Briem et al.103 reported on a robotic sample preparation system for plasma based on a protein precipitation step and a robotic liquid handling system that increased throughput by a factor of four compared to a manual system. [Pg.212]

Hsieh et al. (2003) and Zeng et al. (2003a), used direction injection to quantitate multiple drug discovery compounds simultaneously with good robustness. In one application, the flow rate of the HPLC gradient was programmed. The flow rate was first increased (4 to 8 mL/min) for fast protein clean-up, then decreased (1.2 mL/min) for better sensitivity. The column maintained similar efficiency after several hundred injections. [Pg.285]

Direct injection of plasma or supernatant after protein precipitation on a short column with a high liquid flow rate is a common method for reducing analysis time in the pharmaceutical industry. The direct injection of a sample matrix is also known as the dilute-and-shoot (DAS) approach.62 DAS can be applied to all types of matrices and approaches and is the simplest sample preparation method with matrix dependency. Direct injection can also be approached through the extraction of eluent from PPT, SPE, and LLE onto a normal phase analytical column. The procedure is called hydrophilic interaction liquid chromatography (HILIC)70110111 and it avoids the evaporation and reconstitution steps that may cause loss of samples from heat degradation and absorption. [Pg.329]

Conditions columns, Asahipak GS320 (vinyl alcohol copolymer gel), 50 cm x 7.6 mm i.d. eluent, 0.1 M sodium phosphate containing 0.3 M sodium chloride pH 7.0 flow rate, 1 ml min-1 detection, UV 250 nm direct injection of sample. Peaks l, protein, 2, orotidine 3, creatinine, and 4, uric acid. [Pg.51]

Direct injection API-Electrospray MS is capable of analyzing much larger and less volatile substances than either EI/MS or CI/MS. As a result, this method is often used to provide structural information on peptides, proteins, and polymers derived from both natural and synthetic processes it is also useful in the analysis of many natural compounds including molecules such as saponins and flavonol glycosides, derived from plants. When using direct injection API-electrospray, partial purification and EC preparation are performed elsewhere and a collected fraction is dissolved in an appropriate solvent and injected as a bolus into the mass spectrometer (flow or direct injection or syringe infusion). This has an advantage, as the mass... [Pg.153]

Fig. 5.17 Demonstration of MS-based bioassay functionality using a plant extract. MS instrument Ion-trap mass spectrometer (LCQ Deca, Thermo Electron), (a) MS analysis of pure extract by direct injection onto restricted-access column 2 in the absence of affinity protein, (b) Analysis of the same natural extract spiked with digoxin using the label-free MS assay method as shown in Fig. 5.15. Fig. 5.17 Demonstration of MS-based bioassay functionality using a plant extract. MS instrument Ion-trap mass spectrometer (LCQ Deca, Thermo Electron), (a) MS analysis of pure extract by direct injection onto restricted-access column 2 in the absence of affinity protein, (b) Analysis of the same natural extract spiked with digoxin using the label-free MS assay method as shown in Fig. 5.15.
The packing material first described for direct injection of biological samples was prepared by simply saturating the accessible adsorption sites of a Cis reversed-phase silica with human plasma proteins (105). After saturation, the human plasma proteins were denatured at the external surface, and their native conformation was destroyed. With this treatment, the proteins formed a hydrophilic layer with weak ion-exchange properties, which provided protection from contact with the sample proteins, whereas the alkyl ligands inside the pores remained unchanged and thus served for analyte retention. The retention behavior of the saturated phase did not alter with this treatment, but the efficiency was reduced dramatically. Such protein-coated columns have shown a lifetime of several months (106). [Pg.606]

Despite their distinct advantages, on-line SPE and column-switching proce-dures do not always represent ideal separation techniques. In many cases, only a small number of samples can be analyzed before contamination of the precolumn by proteins occurs. Alternative techniques that prevent the adsorption of macromolecules onto column packings and allow direct injection of sample extracts are those based on use of specific LC columns. Shielded hydrophobic phase (27), small pore reversed-phase (28), and internal surface reversed-phase (29, 30) columns can be used to elute proteins in the excluded volumes, allowing small... [Pg.669]

Thus, simple deproteinization of plasma with trichloroacetic acid, perchloric acid, phosphoric acid, or acetonitrile, followed by centrifugation and direct injection of the supernatants, yielded low recoveries of malachite green and leuco-malachite green, probably due to insufficient debinding of the analytes (495). Acidification or alkalinization of plasma and subsequent extraction with ethyl acetate also resulted in poor recoveries. In contrast, protein denaturation with a mixture of either acetonitrile or methanol and citric acid could substantially improve Ute recovery of the analytes, possibly due to the pairing-ion function of Ure citrate ions. [Pg.1089]

The crude extract needs to be further purified for HPLC analysis. Direct injection of the crude extract into the HPLC would clog the frit and analytical column with precipitated impurities (i.e., proteins). [Pg.1301]

Sulfosalicylic acid has most commonly been used to precipitate proteins prior to ion-exchange amino acid analysis (11). In this mode, SSA allows for a very simple sample preparation that requires only centrifugation of the precipitated sample and then direct injection of the resulting supernatant solution. The supernatant solution is already at an appropriate pH for direct injection. Also, the SSA does not interfere chromatographically since it elutes essentially in the void volume of the column. It has been noted that, if an excessive amount of SSA is employed, resolution of the serine/threonine critical pair can suffer (12). The use of SSA prior to reversed-phase HPLC can be more problematic, since its presence can interfere with precolumn deriva-tization. For example, Cohen and Strydom (13) recommend the separation of the amino acids from the SSA solution on a cation-exchange resin prior to derivatization with phenylisothiocya-nate (PITC). [Pg.60]

FAB and PD have been replaced by electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) in the analytical mass spectrometry laboratory, because both of these newer techniques have a wider mass range of analysis and have lower detection limits. ESI and MALDI have become invaluable ionization techniques for nonvolatile components. This is particularly true for a wide range of biological molecules including proteins, peptides, nucleic acids, etc. Samples can be analyzed by ESI using either direct injection or introduction through liquid chromatography. [Pg.204]


See other pages where Proteins direct injection is mentioned: [Pg.230]    [Pg.230]    [Pg.268]    [Pg.351]    [Pg.378]    [Pg.242]    [Pg.433]    [Pg.412]    [Pg.127]    [Pg.228]    [Pg.322]    [Pg.142]    [Pg.131]    [Pg.354]    [Pg.3]    [Pg.290]    [Pg.329]    [Pg.331]    [Pg.372]    [Pg.1084]    [Pg.580]    [Pg.191]    [Pg.77]    [Pg.326]    [Pg.428]    [Pg.430]    [Pg.433]    [Pg.205]    [Pg.43]    [Pg.463]    [Pg.670]    [Pg.670]    [Pg.609]    [Pg.481]    [Pg.999]    [Pg.260]    [Pg.367]    [Pg.414]   
See also in sourсe #XX -- [ Pg.210 ]




SEARCH



Direct injection

© 2024 chempedia.info