Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein dynamics biomolecular

In this review, we present NMR spectroscopic techniques currently used to study protein dynamics at various time scales. Instead scrutinizing each technique, we put emphasis on their fundamentals. On the other hand, we enumerate a number of NMR-derived parameters and discuss their relation and relevance to macromolecular motions. As a complement, we briefly describe several other techniques capable of capturing protein dynamics, as synthesis of different methods is the most fruitful way to understand biomolecular processes. [Pg.38]

Volkov, S.N. Conformational transitions and the mechanism of transmission of long-range effects in DNA. Preprint ITP-88-12E, Kiev (1988) 22 Krumhansl, J.A., Alexander, D.M. Nonlinear dynamics and conformational exitations in biomolecular materials. In Structure and dynamics nucleic acids and proteins. (Clementi, E., Sarma, R.H., eds) Adenine Press, New York (1983) 61-80... [Pg.125]

Since the stochastic Langevin force mimics collisions among solvent molecules and the biomolecule (the solute), the characteristic vibrational frequencies of a molecule in vacuum are dampened. In particular, the low-frequency vibrational modes are overdamped, and various correlation functions are smoothed (see Case [35] for a review and further references). The magnitude of such disturbances with respect to Newtonian behavior depends on 7, as can be seen from Fig. 8 showing computed spectral densities of the protein BPTI for three 7 values. Overall, this effect can certainly alter the dynamics of a system, and it remains to study these consequences in connection with biomolecular dynamics. [Pg.234]

Our work is targeted to biomolecular simulation applications, where the objective is to illuminate the structure and function of biological molecules (proteins, enzymes, etc) ranging in size from dozens of atoms to tens of thousands of atoms today, with the desire to increase this limit to millions of atoms in the near future. Such molecular dynamics (MD) simulations simply apply Newton s law to each atom in the system, with the force on each atom being determined by evaluating the gradient of the potential field at each atom s position. The potential includes contributions from bonding forces. [Pg.459]

Cheatham T E III, J L Miller, T Fox, T A Darden and P A Kollman 1995. Molecular Dynamics Simulations on Solvated Biomolecular Systems The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA and Proteins. Journal of the American Chemical Society 117 4193-4194. [Pg.365]

Biological membranes provide the essential barrier between cells and the organelles of which cells are composed. Cellular membranes are complicated extensive biomolecular sheetlike structures, mostly fonned by lipid molecules held together by cooperative nonco-valent interactions. A membrane is not a static structure, but rather a complex dynamical two-dimensional liquid crystalline fluid mosaic of oriented proteins and lipids. A number of experimental approaches can be used to investigate and characterize biological membranes. However, the complexity of membranes is such that experimental data remain very difficult to interpret at the microscopic level. In recent years, computational studies of membranes based on detailed atomic models, as summarized in Chapter 21, have greatly increased the ability to interpret experimental data, yielding a much-improved picture of the structure and dynamics of lipid bilayers and the relationship of those properties to membrane function [21]. [Pg.3]

The overall scope of this book is the implementation and application of available theoretical and computational methods toward understanding the structure, dynamics, and function of biological molecules, namely proteins, nucleic acids, carbohydrates, and membranes. The large number of computational tools already available in computational chemistry preclude covering all topics, as Schleyer et al. are doing in The Encyclopedia of Computational Chemistry [23]. Instead, we have attempted to create a book that covers currently available theoretical methods applicable to biomolecular research along with the appropriate computational applications. We have designed it to focus on the area of biomolecular computations with emphasis on the special requirements associated with the treatment of macromolecules. [Pg.4]

The first dynamical simulation of a protein based on a detailed atomic model was reported in 1977. Since then, the uses of various theoretical and computational approaches have contributed tremendously to our understanding of complex biomolecular systems such as proteins, nucleic acids, and bilayer membranes. By providing detailed information on biomolecular systems that is often experimentally inaccessible, computational approaches based on detailed atomic models can help in the current efforts to understand the relationship of the strucmre of biomolecules to their function. For that reason, they are now considered to be an integrated and essential component of research in modern biology, biochemistry, and biophysics. [Pg.519]

In order to study dynamic aspects of biomolecular structure, it is necessary to perform measurements over an appropriate temperature range. This is accomplished by directing dry air downward over the sample cell from the nozzle of a device used to cool protein crystals in X-ray... [Pg.81]

It is not uncommon for protons to be taken up or released upon formation of a biomolecular complex. Experimental data on such processes can be compared to computational results based on, for example, Poisson-Boltzmann calculations.25 There is a need for methods that automatically probe for the correct protonation state in free energy calculations. This problem is complicated by the fact that proteins adapt to and stabilize whatever protonation state is assigned to them during the course of a molecular dynamics simulation.19 When the change in protonation state is known, equations are available to account for the addition or removal of protons from the solvent in the overall calculation of the free energy change.11... [Pg.6]

Selected entries from Methods in Enzymology [vol, page(s)] Biomolecular vibrational spectroscopy, 246, 377 Raman spectroscopy of DNA and proteins, 246, 389 resonance Raman spectroscopy of metalloproteins, 246, 416 structure and dynamics of transient species using time-resolved resonance Raman spectroscopy, 246, 460 infrared spectroscopy applied to biochemical and biological problems, 246, 501 resonance Raman spectroscopy of quinoproteins, 258, 132. [Pg.698]

Abstract Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research. [Pg.153]

Biomolecular recognition is mediated by water motions, and the dynamics of associated water directly determine local structural fluctuation of interacting partners [4, 9, 91]. The time scales of these interactions reflect their flexibility and adaptability. For water at protein surfaces, the studies of melittin and other proteins [45, 46] show water motions on tens of picoseconds. For trapped water in protein crevices or cavities, the dynamics becomes much slower and could extend to nanoseconds [40, 71, 92], These rigid water molecules are often hydrogen bonded to interior residues and become part of the structural integrity of many enzymes [92]. Here, we study local water motions in various environments, from a buried crevice to an exposed surface using site-selected tryptophan but with different protein conformations, to understand the correlation between hydration dynamics and conformational transitions and then relate them to biological function. [Pg.99]

J. J. Hopfield has proposed a so-called energy relay model [101], in which the ping-pong mechanism operates on two identical substrate molecules and releases two identical product molecules. The model introduces the novel idea of dynamic cooperativity by which biomolecular processes in living cells, such as DNA replication and protein biosynthesis, can achieve high fidelity. The model was developed as an alternative to the kinetic proofreading mechanism which we shall discuss in Chapter 5. [Pg.96]


See other pages where Protein dynamics biomolecular is mentioned: [Pg.80]    [Pg.42]    [Pg.120]    [Pg.302]    [Pg.7]    [Pg.246]    [Pg.2]    [Pg.3]    [Pg.70]    [Pg.144]    [Pg.169]    [Pg.392]    [Pg.89]    [Pg.239]    [Pg.293]    [Pg.164]    [Pg.40]    [Pg.130]    [Pg.141]    [Pg.160]    [Pg.95]    [Pg.99]    [Pg.166]    [Pg.346]    [Pg.112]    [Pg.117]    [Pg.215]    [Pg.219]    [Pg.278]    [Pg.281]    [Pg.156]    [Pg.171]    [Pg.46]    [Pg.47]    [Pg.208]    [Pg.95]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Biomolecular

Protein dynamics proteins

© 2024 chempedia.info