Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein buffer systems

Extracellular bicarbonate and intracellular protein buffering systems... [Pg.420]

Wu N, Sweedler JV, Lin M. Enhanced separation and deletion of sermn bilirubm species by capillary electrophoresis using a mixed anionic surfactant-protein buffer system with laser-induced fluorescence detection. J Chromatogr B Biomed Appl 1994 654 185-91. [Pg.1208]

Plasma Protein Buffer System and Plasma Base Excess The buffer value (p) of the nonbicarbonate buffers of plasma is about 7.7 mmol/L at pH 7.40 and a normal plasma protein concentration of 72 g/L. Proteins, especially albumin, account for the greatest portion (95%) of the nonbicarbonate buffer value of the plasma. The most important buffer groups of proteins in the physiological pH range are the imidazole groups of histidines (pimolecule contains 16 histidines. [Pg.1760]

Excess carbonic acid present in blood is to a great extent buffered by the hemoglobin and protein buffer systems (see Figure 46-9). The buffering of CO2 causes a slight rise in cHCOT Thus in the immediate posthypercapnic state,... [Pg.1774]

An average rate of metabolic activity produces roughly 22,000 mEq acid per day. If all of this acid were dissolved at one time in unbuffered body fluids, their pH would be less than 1. However, the pH of the blood is normally maintained between 7.36 and 7.44, and intracellular pH at approximately 7.1 (between 6.9 and 7.4). The widest range of extracellular pH over which the metabolic functions of the liver, the beating of the heart, and conduction of neural impulses can be maintained is 6.8 to 7.8. Thus, until the acid produced from metabolism can be excreted as CO2 in expired air and as ions in the urine, it needs to be buffered in the body fluids. The major buffer systems in the body are the bicarbonate-carbonic acid buffer system, which operates principally in extracellular fluid the hemoglobin buffer system in red blood cells the phosphate buffer system in all types of cells and the protein buffer system of cells and plasma. [Pg.47]

There are also several mechanisms by which our body maintains the pH around 7.4. Some of these mechanisms use simple standard chemistry, some are more complex. These mechanisms are (i) the carbonic acid-bicarbonate buffer system, (ii) the protein buffer system, and (iii) the phosphate buffer system. Apart from these buffers, the pH of our body is also maintained by exhalation of carbon dioxide, elimination of hydrogen ions via the kidneys, etc. [Pg.68]

The protein buffer system is the most active chemical buffer system, handling three-quarters of the buffering of body fluids. The amino acid side groups associated with proteins bind with H+ (NH or release H+ (-COOH) as indicated ... [Pg.46]

FIGURE 7.14 A Fractogel EMD BioSEC Superformance column (600-16) was loaded with 500 /il of BSA, ovalbumin, and cytochrome c (5/5/3 mg/ml) at I ml/min. The test covered 100 individual runs with the standard proteins as samples. The buffer system used was 20 m/VI sodium dihydrogen phosphate, 300 m/VI NaCI, pH 7.2. After each individual run the column was rinsed with I /VI NaOH (60 min with I /VI NaOH at 2 ml/min). No significant change in retention times and resolution was observed after 100 cycles. [Pg.238]

Target protein is not stable in the chosen buffer system for SEC... [Pg.245]

In the development of a SE-HPLC method the variables that may be manipulated and optimized are the column (matrix type, particle and pore size, and physical dimension), buffer system (type and ionic strength), pH, and solubility additives (e.g., organic solvents, detergents). Once a column and mobile phase system have been selected the system parameters of protein load (amount of material and volume) and flow rate should also be optimized. A beneficial approach to the development of a SE-HPLC method is to optimize the multiple variables by the use of statistical experimental design. Also, information about the physical and chemical properties such as pH or ionic strength, solubility, and especially conditions that promote aggregation can be applied to the development of a SE-HPLC assay. Typical problems encountered during the development of a SE-HPLC assay are protein insolubility and column stationary phase... [Pg.534]

This behavior has been observed to a certain extent for some proteins at a low ionic strength of the solution. In contrast to this mechanism, in buffer systems... [Pg.21]

Assays. Protein concentrations were measured by the method of Bradford (18) and the various contractile protein ATPase activities by tRe method of Martin and Doty (19). Gel electrophoresis was carried out by the method of Ames (20) on 1.5 ran polyacrylamide slabs using the discontinuous SDS buffer system of Laemnli (21). Dried gels were scanned at 550 nm for densiometry measurements. [Pg.286]

Intracellular products can be present either as folded, soluble proteins or as dense masses of unfolded protein (inclusion bodies). For these products, it is first necessary to concentrate the cell suspension before effecting release of the product. Filtration can result in a suspension of cells that can be of any desired concentration up to 15 to 17 percent and that can be diafiltered into the desired buffer system. In contrast, the cell slurry that results from centrifugation will be that of... [Pg.73]

The amidine bond formed is quite stable at acid pH however, it is susceptible to hydrolysis and cleavage at high pH. A typical reaction condition for using imidate crosslinkers is a buffer system consisting of 0.2 M triethanolamine in 0.1 M sodium borate, pH 8.2. After conjugating two proteins with a bifunctional imidoester crosslinker, excess imidoester functional groups may be blocked with ethanolamine. [Pg.176]

Moreover, several buffer systems exist in the body, such as proteins, phosphates, and bicarbonates. Proteins are the most important buffers in the body. Protein molecules contain multiple acidic and basic groups that make protein solution a buffer that covers a wide pH range. Phosphate buffers (HPO T /H2P07) are mainly intracellular. The pK of this system is 6.8 so that it is moderately efficient at a physiological pH of 7.4. The concentration of phosphate is low in the extracellular fluid but the phosphate buffer system is an important urinary buffer. Bicarbonate (H2C03/HC0 3) is also involved in pH control but it is not an important buffer system because normal blood pH 7.4 is too far from its pK 6.1 [144],... [Pg.311]

Native fluorescence of a protein is due largely to the presence of the aromatic amino acids tryptophan and tyrosine. Tryptophan has an excitation maximum at 280 nm and emits at 340 to 350 nm. The amino acid composition of the target protein is one factor that determines if the direct measurement of a protein s native fluorescence is feasible. Another consideration is the protein s conformation, which directly affects its fluorescence spectrum. As the protein changes conformation, the emission maximum shifts to another wavelength. Thus, native fluorescence may be used to monitor protein unfolding or interactions. The conformation-dependent nature of native fluorescence results in measurements specific for the protein in a buffer system or pH. Consequently, protein denatur-ation may be used to generate more reproducible fluorescence measurements. [Pg.18]

The electrical current in an electrophoresis cell is carried largely by the ions supplied by buffer compounds. Proteins constitute only a small proportion of the current-carrying ions in an electrophoresis cell. Buffer systems for electrophoresis are classified as either continuous or discontinuous, depending on whether one or more buffers are used. They are further classified as native or denaturing, depending on whether their compositions maintain or destroy protein structure and activity. [Pg.122]

The choice of native electrophoresis system depends on the particular proteins of interest. There is no universal buffer system ideal for the electrophoresis of all native proteins. Both protein stability and resolution are important considerations in buffer selection. Recommended choices are the Omstein-Davis discontinuous system21-24 and McLellan s continuous buffers.25... [Pg.124]

Figure 8.5 Effect of pH on protein mobility. Hemoglobin A (pi 7.1) and Hemoglobin C (pi 7.4) were electrophoresed in eight of the McLellan native, continuous buffer systems (Table 8.1). The diagram is drawn to scale. Migration is from top to bottom as shown by the vertical arrows. Bands marked A or C indicate the positions of the two hemoglobin variants in each gel representation. The polarities of the voltages applied to the electrophoresis cell are indicated by + and - signs above and below the vertical arrows. Run times are shown below the arrows. Note the polarity change between the gel at pH 7.4 and the one at pH 8.2. This reflects the pis of the two proteins (and was accomplished by reversing the leads of the electrophoresis cell at the power supply). Figure 8.5 Effect of pH on protein mobility. Hemoglobin A (pi 7.1) and Hemoglobin C (pi 7.4) were electrophoresed in eight of the McLellan native, continuous buffer systems (Table 8.1). The diagram is drawn to scale. Migration is from top to bottom as shown by the vertical arrows. Bands marked A or C indicate the positions of the two hemoglobin variants in each gel representation. The polarities of the voltages applied to the electrophoresis cell are indicated by + and - signs above and below the vertical arrows. Run times are shown below the arrows. Note the polarity change between the gel at pH 7.4 and the one at pH 8.2. This reflects the pis of the two proteins (and was accomplished by reversing the leads of the electrophoresis cell at the power supply).

See other pages where Protein buffer systems is mentioned: [Pg.359]    [Pg.645]    [Pg.10]    [Pg.359]    [Pg.645]    [Pg.10]    [Pg.2057]    [Pg.220]    [Pg.51]    [Pg.298]    [Pg.392]    [Pg.403]    [Pg.403]    [Pg.226]    [Pg.77]    [Pg.313]    [Pg.177]    [Pg.523]    [Pg.150]    [Pg.479]    [Pg.420]    [Pg.422]    [Pg.431]    [Pg.18]    [Pg.72]    [Pg.117]    [Pg.122]    [Pg.123]    [Pg.126]    [Pg.127]    [Pg.128]    [Pg.130]    [Pg.135]   
See also in sourсe #XX -- [ Pg.985 ]




SEARCH



Buffer system

Protein system

Proteins buffer

© 2024 chempedia.info