Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties of Base Materials

A material is not in a liqnid state when it is above the Tg, as some discnssions of Tg imply. It is a temperature at which physical changes take place due to the weakening of molecular bonds within the material. It is important to understand Tg since the properties of base materials are different above Tg than below Tg. While the Tg is typically described as being a very precise temperature, this is somewhat misleading, because the physical properties of the material can begin to change as the Tg is approached and some of the molecular bonds are affected. As the temperature increases, more of the bonds become weakened until for all practical purposes, aU relevant bonds are affected. This explains the curved line in Fig. 6.1, which is discussed in the following text. [Pg.124]

Table 9 compares the most important properties of substrate materials based on BPA-PC, PMMA, and CPO (three different products) (216,217). The future will prove if the current disadvantages of CPO against BPA-PC regarding warp, processibiUty (melt viscosity), and especially cost can be alleviated. CycHc polyolefins (CPO) and, especially cycloolefin copolymers (COC) (218) and blends of cycloolefin copolymers with suitable engineering plastics have the potential to be interesting materials for substrate disks for optical data storage. [Pg.161]

Some amino resins are used as additives to modify the properties of other materials. For example, a small amount of amino resin added to textile fabric imparts the familiar wash-and-wear quaUties to shirts and dresses. Automobile tires are strengthened by amino resins which improve the adhesion of mbber to tire cord (qv). A racing sailboat may have a better chance to win because the sails of Dacron polyester have been treated with an amino resin (1). Amino resins can improve the strength of paper even when it is wet. Molding compounds based on amino resins are used for parts of electrical devices, botde and jar caps, molded plastic dinnerware, and buttons. [Pg.321]

Changes in the backbone of the sulfonic acid azo dyes often produce drastic changes in properties of the materials. The disulfonic acid (5) is somewhat similar to (3), but is used to color leather red (77). More esoteric dyes have also been developed based on sulfonic acid metal complexes and chitosan-derived materials (78,79). [Pg.100]

These lead-based materials (PZT, PLZT, PMN) form a class of ceramics with either important dielectric, relaxor, pie2oelectric, or electrooptic properties, and are thus used for appHcations ia actuator and sensor devices. Resistive properties of these materials ia film form mirror the conduction processes ia the bulk material. Common problems associated with their use are low dielectric breakdown, iacreased aging, and electrode iajection, decreasiag the resistivity and degrading the properties. [Pg.362]

A crude approximation to computer-based systems can be achieved by considering tables of properties of plastics materials such as those published annually in the Modern Plastics Encyclopaedia. Since the tables are to be marked, the following exercise should be carried out on photocopies ... [Pg.895]

Fire properties of insulation materials range from the highest to the lowest, from non-combustible to flammable with toxic fume emission. Generally, inorganic materials tend to be non-combustible while organic (or oil-based) materials are combustible, but many have surface treatments to improve their fire-safety rating. [Pg.117]

However, the chief purpose of introduction of fillers into PCM is to make possible the modification of polymers and thereby create materials with a prescribed set of physico-mechanical properties, and, obviously, the properties of filled materials may be controlled by, for example, varying the type of the base polymer (the matrix ) and filler, its particle size distribution and shape. It may not require a large quantity of filler [7]. Thanks to considerable advances in PCM research, their use in a broad range of industries — machine building, construction, aerospace technology, etc. — has become extensive [8 — 11]. [Pg.3]

The behavior of materials (plastics, steels, etc.) under dynamic loads is important in certain mechanical analyses of design problems. Unfortunately, sometimes the engineering design is based on the static loading properties of the material rather than dynamic properties. Quite often this means over-design at best and incorrect design resulting... [Pg.43]

Fig. 2-45 Summary of high-performance fatigue properties of different materials based on their percent of ultimate static tensile strength. Fig. 2-45 Summary of high-performance fatigue properties of different materials based on their percent of ultimate static tensile strength.
A number of areas in which plastics are used in electrical and electronic design have been covered there are many more. Examples include fiber optics, computer hardware and software, radomes for radar transmitters, sound transmitters, and appliances. Reviewed were the basic use and behavior for plastics as an insulator or as a dielectric material and applying design parameters. The effect of field intensity, frequency, environmental effects, temperature, and time were reviewed as part of the design process. Several special applications for plastics based on intrinsic properties of plastics materials were also reviewed. [Pg.229]

Two approaches to the attainment of the oriented states of polymer solutions and melts can be distinguished. The first one consists in the orientational crystallization of flexible-chain polymers based on the fixation by subsequent crystallization of the chains obtained as a result of melt extension. This procedure ensures the formation of a highly oriented supramolecular structure in the crystallized material. The second approach is based on the use of solutions of rigid-chain polymers in which the transition to the liquid crystalline state occurs, due to a high anisometry of the macromolecules. This state is characterized by high one-dimensional chain orientation and, as a result, by the anisotropy of the main physical properties of the material. Only slight extensions are required to obtain highly oriented films and fibers from such solutions. [Pg.207]

After a temptative structure-based classification of different kinds of polymorphism, a description of possible crystallization and interconversion conditions is presented. The influence on the polymorphic behavior of comonomeric units and of a second polymeric component in miscible blends is described for some polymer systems. It is also shown that other characterization techniques, besides diffraction techniques, can be useful in the study of polymorphism in polymers. Finally, some effects of polymorphism on the properties of polymeric materials are discussed. [Pg.183]

Jorgensen et al. has developed a series of united atom intermolecular potential functions based on multiple Monte Carlo simulations of small molecules [10-23]. Careful optimisation of these functions has been possible by fitting to the thermodynamic properties of the materials studied. Combining these OPLS functions (Optimised Potentials for Liquid Simulation) with the AMBER intramolecular force field provides a powerful united-atom force field [24] which has been used in bulk simulations of liquid crystals [25-27],... [Pg.44]


See other pages where Properties of Base Materials is mentioned: [Pg.16]    [Pg.165]    [Pg.169]    [Pg.171]    [Pg.175]    [Pg.230]    [Pg.16]    [Pg.165]    [Pg.169]    [Pg.171]    [Pg.175]    [Pg.230]    [Pg.2201]    [Pg.2]    [Pg.96]    [Pg.131]    [Pg.175]    [Pg.75]    [Pg.242]    [Pg.440]    [Pg.347]    [Pg.458]    [Pg.189]    [Pg.286]    [Pg.358]    [Pg.135]    [Pg.201]    [Pg.488]    [Pg.6]    [Pg.9]    [Pg.421]    [Pg.255]    [Pg.406]    [Pg.864]    [Pg.941]    [Pg.106]    [Pg.207]    [Pg.209]    [Pg.239]    [Pg.554]    [Pg.851]    [Pg.158]   


SEARCH



Physical properties of alginate-based materials

Properties based

Properties of Protein-based Materials

Synthesis, characterization and properties of regioregular polythiophene-based materials

© 2024 chempedia.info