Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties in Solutions

Caging is an important property in solution and msight mto this phenomenon has been obtained by studying photodestniction of BrJ(M), and I7 (Mjjrclusters, where M is a ligand such as Ar or CO2. When the core is... [Pg.816]

There have been some attempts to compute nonlinear optical properties in solution. These studies have shown that very small variations in the solvent cavity can give very large deviations in the computed hyperpolarizability. The valence bond charge transfer (VB-CT) method created by Goddard and coworkers has had some success in reproducing solvent effect trends and polymer results (the VB-CT-S and VB-CTE forms, respectively). [Pg.259]

Usually the acid-base properties of poly electrolyte are studied by potentiometric titrations. However it is well known, that understanding of polyelectrolyte properties in solution is based on the knowledge of the thermodynamic properties. Up to now, there is only a small number of microcalorimetry titrations of polyelectrolyte solutions published. Therefore we carried out potentiometric and microcalorimetric titrations of hydrochloric form of the linear and branched polyamines at 25°C and 65°C, to study the influence of the stmcture on the acid-base properties. [Pg.148]

Neoprene XD. Developed in the 1980s, this polychloroprene family was prepared using special xanthogendisulphides as chain modifiers, offering improved processability and vulcanizate properties. In solution, these polychloroprenes show slow crystallization and high temperature resistance. [Pg.594]

This paper will not described the chemical structure of pectins which is a difficult problem [1] even if the physical properties in solution and ability to form gel must be directly related with the distribution of the units along the chain. The functional properties of pectins are not only related to the neutral sugar content (up to 15 %) but also to the distribution of structural blocks having very different contibutions. [Pg.22]

Poly(starch-g-(l-amidoethylene)) copolymer is not a polyelectrolyte and will be a smaller molecule in water than an equal molecular weight, partially hydrolyzed poly(l-amidoethylene). Polyelectrolyte effect should, however, cause the graft copolymer to expand in solution in the same way it causes poly(l -amidoethylene) to expand, so a series of hydrolyzed graft copolymers were prepared from poly(starch-g-(l-amidoethylene))(41-43) and these derivatives were tested to determine the effect of hydrolysis on copolymer properties in solution. [Pg.184]

Fractional precipitation refers to a separation process whereby some ions are removed from solution by precipitation, leaving other ions with similar properties in solution. [Pg.342]

It was mentioned previously that the narrow range of concentrations in which sudden changes are produced in the physicochemical properties in solutions of surfactants is known as critical micelle concentration. To determine the value of this parameter the change in one of these properties can be used so normally electrical conductivity, surface tension, or refraction index can be measured. Numerous cmc values have been published, most of them for surfactants that contain hydrocarbon chains of between 10 and 16 carbon atoms [1, 3, 7], The value of the cmc depends on several factors such as the length of the surfactant chain, the presence of electrolytes, temperature, and pressure [7, 14], Some of these values of cmc are shown in Table 2. [Pg.293]

Polymers having ionisable groups along the chain are known as polyelectrolytes. They generally exhibit properties in solution which are quite different from those with non-ionisable structures. Examples of polyelectrolytes include polyacids like poly (acrylic acid) and hydrolysed copolymers of maleic anhydride, polybases like poly (vinyl amine) and poly (4-vinyl pyridine), polyphosphates, nucleic acids, and proteins. [Pg.138]

Jancso, G., Rebelo, L. P. N. and Van Hook, W. A. Isotope effects in solution thermodynamics excess properties in solutions of isotopomers. Chem. Rev. 93, 2645 (1993). [Pg.180]

Specifically, when histones are dissociated from DNA in 2 M NaCl, and H3 H4 tetramer and H2A-H2B dimer may be identified after fractionation of the histones at pH 5.0 and cross-linking with dimethylsu-berimidate (Komberg and Thomas, 1974). The inference was drawn that these complexes exist as such in the intact nucleosome. Furthermore, since both the un-cross-linked H3 H4 tetramer, and the uncross-linked H2A-H2B dimer are stable complexes, it has proved possible to characterize their physical properties in solution. Some of these results are summarized here. [Pg.12]

The experimental techniques for the study of conformational branched properties in solution are the same as used for linear chains. These are, in particular, static and dynamic light scattering, small angle X-ray (SAXS) and small angle neutron (SANS) scattering methods, and common capillary viscometry. These methods are supported by osmotic pressure measurements and, nowadays extensively applied, size exclusion chromatography (SEC) in on-line combination with several detectors. These measurements result in a list of molecular parameters which are given in Table 1. [Pg.126]

As already shown, conventional macromolecules (or polymers) consist of a minimum of a several hundred covalently linked atoms and have molar masses clearly above 10 g/mol. The degree of polymerization, P, and the molecular weight, M, are the most important characteristics of macromolecular substances because nearly all properties in solution and in bulk depend on them. The degree of polymerization indicates how many monomer units are linked to form the polymer chain. The molecular weight of a homopolymer is given by Eq. 1.1. [Pg.3]

Investigations of physical properties in solution as well as in the solid state have been predominantly carried out on C q, and to a minor extent on C70, since these are the most abimdant fullerenes. Currently, little material is available for the higher fullerenes or endohedrals, because it takes about 250 h to produce 1 mg of any of these [269]. [Pg.33]

Hydrogen bonding interactions are important for the development of selfassembling supramolecular materials, which are defined as materials in which monomeric units are reversibly bound via secondary interactions to form polymer-like stmctures that exhibit polymeric properties in solution as well as in bulk (Bmnsveld et al. 2001). Rotello used hydrogen bond functional polymers to direct the formation of large vesicles (lUian et al. 2000), reversibly attach polymers on... [Pg.65]

Later reports (58) have questioned whether the earlier report (55) was correct in concluding that the planar cobalt(II) complex of salen was formed in zeolite Y. The characteristics of the supposedly zeolite-entrapped [Con(salen)] are apparently not as similar to the same species in solution as previously reported. For example, planar [Con(salen)] and its adducts with axially disposed bases are generally ESR-detect-able low-spin complexes (59), and cyclic voltammetry of the entrapped complex revealed a Co3+/Co2+ redox transition that is absent in solution (60). These data, and more recent work (58), indicate that, in the zeolite Y environment, [Con(salen)] is probably not a planar system. Further, the role of pyridine in the observed reactivity with dioxygen is unclear, since, once the pyridine ligand is bound to the cobalt center, it is doubtful that the complex could actually even fit in the zeolite Y cage. The lack of planarity may account for the differences in properties between [Con(salen)] entrapped in zeolite Y and its properties in solution. [Pg.280]

Given tlie disparate nature of the physical interactions between die different electronic states and the solvent, and the non-equilibrium nature of the solvation of at least one state in die vertical process, theoretical models require a fairly high degree of sophistication in their construction to be applicable to predicting spectroscopic properties in solution. This requirement, coupled with the rather poor utility of available experimental data (most solution spectra show very broad absorption peaks, making it difficult to assign vertical transitions accurately in the absence of a very complex dynamical analysis), has kept most theory in this area at the developers level. A full discussion is beyond the scope of an introductory text, but we will briefly touch on a few of die key issues. [Pg.513]

Electrochemical Properties in Solutions , J. Volke, in Physical Methods in Heterocyclic Chemistry , ed. A. R. Katritzky, Academic Press, New York, 1963, vol. 1, pp. 217-323. [Pg.81]

Use of the optically resolved complex leads to the optically active polymer, but this property, which arises from the helical chain structure, is found only in the swollen polymer and is easily lost in toluene or dichloroacetic acid solution 144). The polymerization occurs with a high degree of enantioface selection, and the model for the product backbone is indeed chiral. However, because of the presence of a mirror, plane in the polymer chain (effects of chain termini neglected), the product does not have chiral properties in solution. [Pg.292]


See other pages where Properties in Solutions is mentioned: [Pg.122]    [Pg.149]    [Pg.431]    [Pg.325]    [Pg.609]    [Pg.609]    [Pg.285]    [Pg.286]    [Pg.89]    [Pg.147]    [Pg.83]    [Pg.267]    [Pg.14]    [Pg.77]    [Pg.191]    [Pg.217]    [Pg.173]    [Pg.161]    [Pg.938]    [Pg.205]    [Pg.348]    [Pg.388]    [Pg.49]    [Pg.122]    [Pg.119]    [Pg.115]    [Pg.137]    [Pg.243]    [Pg.10]    [Pg.144]    [Pg.230]    [Pg.356]   


SEARCH



Solute property

Solution properties

© 2024 chempedia.info