Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties dissipation factor

Electrical Properties. The low polarizabiHty of perfluorinated Hquids makes them exceUent insulators. Theh dielectric strengths are about 40 kV (ASTM D877) dissipation factors are about 0.0001 at 1 MH2 dielectric constants are about 1.8 volume resistivities are about 1 x 10 ohm-cm (ASTM D257) (17). [Pg.297]

In air, PTFE has a damage threshold of 200—700 Gy (2 x 10 — 7 x 10 rad) and retains 50% of initial tensile strength after a dose of 10" Gy (1 Mrad), 40% of initial tensile strength after a dose of 10 Gy (10 lad), and ultimate elongation of 100% or more for doses up to 2—5 kGy (2 X 10 — 5 X 10 rad). During irradiation, resistivity decreases, whereas the dielectric constant and the dissipation factor increase. After irradiation, these properties tend to return to their preexposure values. Dielectric properties at high frequency are less sensitive to radiation than are properties at low frequency. Radiation has veryHtde effect on dielectric strength (86). [Pg.352]

Electrical Properties. CeUular polymers have two important electrical appHcations (22). One takes advantage of the combination of inherent toughness and moisture resistance of polymers along with the decreased dielectric constant and dissipation factor of the foamed state to use ceUular polymers as electrical-wire insulation (97). The other combines the low dissipation factor and the rigidity of plastic foams in the constmction of radar domes. Polyurethane foams have been used as high voltage electrical insulation (213). [Pg.415]

Electrical Insulation. The substitution of a gas for part of a soHd polymer usuaUy results in large changes in the electrical properties of the resulting material. The dielectric constant, dissipation factor, and dielectric strength are aU generaUy lowered in amounts roughly proportional to the amount of gas in the foam. [Pg.416]

BiaxiaHy orieated PPS film is transpareat and nearly colorless. It has low permeability to water vapor, carbon dioxide, and oxygen. PPS film has a low coefficient of hygroscopic expansion and a low dissipation factor, making it a candidate material for information storage devices and for thin-film capacitors. Chemical and thermal stability of PPS film derives from inherent resia properties. PPS films exposed to tolueae or chloroform for 8 weeks retaia 75% of theh original streagth. The UL temperature iadex rating of PPS film is 160°C for mechanical appHcatioas and 180°C for electrical appHcations. Table 9 summarizes the properties of PPS film. [Pg.450]

Electrical Properties. Polysulfones offer excellent electrical insulative capabiUties and other electrical properties as can be seen from the data in Table 7. The resins exhibit low dielectric constants and dissipation factors even in the GH2 (microwave) frequency range. This performance is retained over a wide temperature range and has permitted appHcations such as printed wiring board substrates, electronic connectors, lighting sockets, business machine components, and automotive fuse housings, to name a few. The desirable electrical properties along with the inherent flame retardancy of polysulfones make these polymers prime candidates in many high temperature electrical and electronic appHcations. [Pg.467]

T and are the glass-transition temperatures in K of the homopolymers and are the weight fractions of the comonomers (49). Because the glass-transition temperature is directly related to many other material properties, changes in T by copolymerization cause changes in other properties too. Polymer properties that depend on the glass-transition temperature include physical state, rate of thermal expansion, thermal properties, torsional modulus, refractive index, dissipation factor, brittle impact resistance, flow and heat distortion properties, and minimum film-forming temperature of polymer latex... [Pg.183]

Electrical and Mechanical Properties. Electrical properties include dielectric strength, dielectric constant, dissipation factor, and volume resistivity these properties can change with temperature and absorbed water. [Pg.265]

Some of the other critical properties defined by the industry include volume resistivity, dielectric dissipation factor, insulative resistance and the like. [Pg.518]

The electneal properties of PTFE are dominated by its extremely tow dielectric constant (2.1) This value is invanant over a broad range ot temperatures (- 40 to 250 °C) and frequencies (5 Hzto 10 GHz). Smularly, PTFE has an unusually low dissipation factor, which is also quite mdependent of temperature and frequency fhis behavior results from the high degree of dipolar symmetry of the perfluonnated and unbranched chains The dielectnc strength, resistivity, and arc resistance are very high... [Pg.1106]

Material response is typically studied using either direct (constant) applied voltage (DC) or alternating applied voltage (AC). The AC response as a function of frequency is characteristic of a material. In the future, such electric spectra may be used as a product identification tool, much like IR spectroscopy. Factors such as current strength, duration of measurement, specimen shape, temperature, and applied pressure affect the electric responses of materials. The response may be delayed because of a number of factors including the interaction between polymer chains, the presence within the chain of specific molecular groupings, and effects related to interactions in the specific atoms themselves. A number of properties, such as relaxation time, power loss, dissipation factor, and power factor are measures of this lag. The movement of dipoles (related to the dipole polarization (P) within a polymer can be divided into two types an orientation polarization (P ) and a dislocation or induced polarization. [Pg.445]

The electrical properties of materials are important for many of the higher technology applications. Measurements can be made using AC and/or DC. The electrical properties are dependent on voltage and frequency. Important electrical properties include dielectric loss, loss factor, dielectric constant, conductivity, relaxation time, induced dipole moment, electrical resistance, power loss, dissipation factor, and electrical breakdown. Electrical properties are related to polymer structure. Most organic polymers are nonconductors, but some are conductors. [Pg.455]

There have been isolated QSPR studies of a number of other polymer properties. These include the dielectric constant [144], the dielectric dissipation factor (tan 8) [168], the solubility parameter [169], the molar thermal decomposition function [170], the vitrification temperature of polyarylene oxides [171], and quantities relating to molecularly imprinted polymers [172, 173]. The interested reader is referred to the literature for further information. [Pg.142]

Insulation Integrity. Insulation integrity is a function of an interlayer dielectric/passivant defined by specific electrical, mechanical and passivation properties. The D.C. electrical property of interest is the I-V characteristic which is used to deduce conductivity and breakdown field strength. The corresponding A.C. electrical property is dissipation factor. The pertinent mechanical and passivation properties are, respectively, pinhole density and performance rating as a diffusion barrier to Na" " and H2O. [Pg.95]

The dielectric properties of polylmldes are highly dependent on cure conditions. Having achieved optimum cure however, the measured dissipation factor at 1 MHz Is 0.003 - 0.007 and the measured dielectric constant a 1 MHz Is 3.5 for the three polylmldes Investigated. [Pg.104]

The electric properties of a material vary with the frequency of the applied current. The response of a polymer to an applied current is delayed because of a number of factors including the interaction between polymer chains, the presence within the chain of specific molecular groupings, and effects related to interactions within the specific atoms themselves. A number of parameters are employed as measures of this lag, such as relaxation time, power loss, dissipation factor, and power factor. [Pg.78]

The standard method for making measurements of dielectric properties is to place a sample between closely spaced parallel conducting plates, and to monitor the AC equivalent capacitance and dissipation factor of the resulting capacitor. The capacitance is proportional to the dielectric permittivity (e ) at the measurement frequency, and the dissipation factor in combination with the value can be used to extract the dielectric loss factor (e"). ... [Pg.173]

In general, fluoropolymers possess the unique combination of high thermal stability, chemical inertness, unusual surface properties, low dielectric constants and dissipation factors, low water absorptivities, excellent weatherability and low flammabilities. Therefore there appears to be an ever-increasing market for fluoropolymers in spite of their relatively high cost [211,212],... [Pg.142]


See other pages where Properties dissipation factor is mentioned: [Pg.361]    [Pg.361]    [Pg.365]    [Pg.367]    [Pg.375]    [Pg.377]    [Pg.155]    [Pg.268]    [Pg.449]    [Pg.57]    [Pg.342]    [Pg.363]    [Pg.704]    [Pg.1110]    [Pg.103]    [Pg.115]    [Pg.98]    [Pg.213]    [Pg.555]    [Pg.57]    [Pg.155]    [Pg.268]    [Pg.449]    [Pg.1110]    [Pg.666]    [Pg.1355]    [Pg.487]    [Pg.22]    [Pg.202]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Dissipation factor

Dissipation properties

Dissipative factor

Dissipative properties

Electrical properties dissipation factor

Factorization property

© 2024 chempedia.info