Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Product temperature, effect

G. Manos, A. Garforth and J. Dwyer Catalytic Degradation of High Density Polyethylene on an Ultrastable Y Zeolite. Nature of Initial Polymer Reactions, Pattern of Formation of Gas and Liquid Products, Temperature Effects. Industrial Engineering Chemistry Research, 39, 1203 (2000). [Pg.206]

Analogue compensations for temperature effects are required in production... [Pg.327]

Single-Effect Evaporators The heat requirements of a singleeffect continuous evaporator can be calculated by the usual methods of stoichiometry. If enthalpy data or specific heat and heat-of-solution data are not available, the heat requirement can be estimated as the sum of the heat needed to raise the feed from feed to product temperature and the heat required to evaporate the water. The latent heat of water is taken at the vapor-head pressure instead of at the product temperature in order to compensate partiaUv for any heat of solution. If sufficient vapor-pressure data are available for the solution, methods are available to calculate the true latent heat from the slope of the Diihriugliue [Othmer, Ind. Eng. Chem., 32, 841 (1940)]. [Pg.1145]

Changes in surface temperature elsewhere in the globe are likely to have a lesser impact on carbon or DMS production. For example, the warming that a doubling of atmospheric COj could produce in the Southern Ocean has been modelled to lead to decreased carbon uptake, but enhanced biological productivity, due to the temperature effect on phytoplankton growth." This would lead to an approximately 5% increase in DMS production and a lesser increase in CCN. There is thus a negative feedback here, but only of minor impact. [Pg.32]

Polypropylene differs from polyethylene in its chemical reactivity because of the presence of tertiary carbon atoms occurring alternately on the chain backbone. Of particular significance is the susceptibility of the polymer to oxidation at elevated temperatures. Some estimate of the difference between the two polymers can be obtained from Figure 1J.7, which compares- the rates of oxygen uptake of eaeh polymer at 93°C. Substantial improvements can be made by the inclusion of antioxidants and such additives are used in all commercial compounds. Whereas polyethylene cross-links on oxidation, polypropylene degrades to form lower molecular weight products. Similar effects are noted... [Pg.257]

Temperature is of particular importance to the performance of anodes, especially when anodes are buried. Anodes may often be used to protect pipelines containing hot products. Thus temperature effects must be considered. Figure 10.14 illustrates the effect of temperature on different anodes in hot saline mud. Al-Zn-In anodes experience greatly reduced capacity in open seawater at temperatures above 70°C (down to 1200Ah/kg at 100°C) and in seabed muds in excess of (900 Ah/kg at 80°C). At... [Pg.146]

Taft equation, 229-230 Temperature, effect on rate, 156-160 Temperature-jump method, 256 Termination reaction, 182 Thermodynamic products, 59 Three-halves-order kinetics, 29... [Pg.281]

The effect of the temperature on the polymerization of 53 in methylene chloride is presented in Table 3. The upper half of the data in the table shows the temperature effect on the products in the initial stage of the reaction, and the lower half is that for the middle to final stages of the reaction. Obviously there is a drastic change in the reaction products between -20 and -30 ° Below —30 °C, the cyclic dimer is the predominant or even sole product after the reaction of 48 hours, while above —20 °C, the low molecular weight polymer is exclusively formed. The cyclic oligomers once formed in the initial stage of the reaction are converted to the polymer in the later stage of the reaction above —20 °C. [Pg.65]

The entropy of any chemical substance increases as temperature increases. These changes in entropy as a function of temperature can be calculated, but the techniques require calculus. Fortunately, temperature affects the entropies of reactants and products similarly. The absolute entropy of every substance increases with temperature, but the entropy of the reactants often changes with temperature by almost the same amount as the entropy of the products. This means that the temperature effect on the entropy change for a reaction is usually small enough that we can consider A Sj-eaction he independent of temperature. [Pg.1005]

Both concentration and temperature affect the rate of a chemical reaction. This section examines how changes in the concentrations of starting materials and products affect the rate of a chemical reaction. We describe temperature effects in Section 15-1. [Pg.1059]

Viscometer test. Typical crosslinked starches are obtained when the initial rise of the viscosity of the product is between 104° and 144° C, and the viscosity of the product does not rise above 200 Brabender units at temperatures less dian 130° C. The crosslinked starch slurry is then drum-dried and milled to obtain a dry product. The effectiveness of the product is checked by the API Fluid Loss Test after static aging of sample drilling fluids containing the starch at elevated temperatures. The milled dry product can then be incorporated into the oil well drilling fluid of the drill site. [Pg.41]

From the coverage made thus far, it may be of interest to record in one place the different factors which influence the rate of chemical reactions. The rate of chemical reaction depends essentially on four factors. The nature of reactants and products is one. For example, certain physical properties of the reactants and products govern the rate. As a specific example in this context mention may be of oxidation of metals. The volume ratio of metallic oxide to metal may indicate that a given oxidation reaction will be fast when the oxide is porous, or slow when the oxide is nonporous, thus presenting a diffusion barrier to the metal or to oxygen. The other two factors are concentration and temperature effects, which are detailed in Sections. The fourth factor is the presence of catalysts. [Pg.305]

Andersen, J.N., "Temperature Effect on Recombinant Protein Production Using a Baculovirus/Insect Cell Expression System", Diploma Thesis, University of Calgary and Technical University of Denmark, 1995. [Pg.391]

The solvent and temperature effects for the Michael addition of amidoxime 7 to DMAD were probed because the reaction itself occurs without any other catalysts. As shown in Table 6.2, the reaction gave a high ratio of 8E in strongly aprotic polar solvents such as DMF and DMSO (entry 1 and 2). 8E was also found as the major product in MeCN (entry 3), dichloromethane (entry 4), and xylenes (entry 5). To our delight, the desired 8Z was obtained as the major component in methanol (entry 6). The stereoselectivity of 8Z versus 8E was better at low temperature (entry 7). A similar result was observed when the reaction was run in THF or dichlo-roethane in the presence of a catalytic amount of DABCO (entries 9 and 10). [Pg.171]

A number of products in which one of the naphthalene rings has been reduced have interesting pharmacological properties. Reaction of tetralone 30 with dimethylamine under TiCl catalysis produces the corresponding enamine (31). Reaction with formic acid at room temperature effects reduction of the... [Pg.213]

Figure 1 The effect of product temperature on primary drying time. 5% (v/v) solute cake depth of 1 cm. ( ) KC1 (A) povidone (polyvinylpyrrolidone). (From Ref. 1.)... Figure 1 The effect of product temperature on primary drying time. 5% (v/v) solute cake depth of 1 cm. ( ) KC1 (A) povidone (polyvinylpyrrolidone). (From Ref. 1.)...
The heat of decomposition (238.4 kJ/mol, 3.92 kJ/g) has been calculated to give an adiabatic product temperature of 2150°C accompanied by a 24-fold pressure increase in a closed vessel [9], Dining research into the Friedel-Crafts acylation reaction of aromatic compounds (components unspecified) in nitrobenzene as solvent, it was decided to use nitromethane in place of nitrobenzene because of the lower toxicity of the former. However, because of the lower boiling point of nitromethane (101°C, against 210°C for nitrobenzene), the reactions were run in an autoclave so that the same maximum reaction temperature of 155°C could be used, but at a maximum pressure of 10 bar. The reaction mixture was heated to 150°C and maintained there for 10 minutes, when a rapidly accelerating increase in temperature was noticed, and at 160°C the lid of the autoclave was blown off as decomposition accelerated to explosion [10], Impurities present in the commercial solvent are listed, and a recommended purification procedure is described [11]. The thermal decomposition of nitromethane under supercritical conditions has been studied [12], The effects of very high pressure and of temperature on the physical properties, chemical reactivity and thermal decomposition of nitromethane have been studied, and a mechanism for the bimolecular decomposition (to ammonium formate and water) identified [13], Solid nitromethane apparently has different susceptibility to detonation according to the orientation of the crystal, a theoretical model is advanced [14], Nitromethane actually finds employment as an explosive [15],... [Pg.183]

These results are in agreement with the literature results, especially with data concerning temperature effects on CO conversion.121619 20 In case of temperature effect on product distribution, there are many studies that, in apparent disagreement with what is presented here, report an increase of selectivity to the lighter products with increasing temperature. These data, however, are compatible with our results if one considers the narrow temperature interval (220-235°C) investigated in this study. [Pg.303]


See other pages where Product temperature, effect is mentioned: [Pg.571]    [Pg.353]    [Pg.351]    [Pg.183]    [Pg.476]    [Pg.684]    [Pg.929]    [Pg.802]    [Pg.696]    [Pg.283]    [Pg.303]    [Pg.453]    [Pg.470]    [Pg.167]    [Pg.56]    [Pg.818]    [Pg.366]    [Pg.25]    [Pg.27]    [Pg.73]    [Pg.26]    [Pg.166]    [Pg.625]    [Pg.632]    [Pg.688]    [Pg.224]    [Pg.26]    [Pg.220]    [Pg.222]   


SEARCH



Effect of temperature on product

Effect of temperature on product distribution

Hydrolysis products, effect temperature

Methanol, production temperature effect

Oxidation products temperature effect

Pharmaceutical product shelf-life temperature effects

Product effect

Product temperature, effect from wood

Temperature effects corrosion products

Temperature effects on productivity

Temperature production

© 2024 chempedia.info