Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probability distributions variable

We consider a minimization rather than a maximization problem for the sake of notational convenience.) Here C R is a set of permissible values of the vector x of decision variables and is referred to as the feasible set of problem (11). Often x is defined by a (finite) number of smooth (or even linear) constraints. In some other situations the set x is finite. In that case problem (11) is called a discrete stochastic optimization problem (this should not be confused with the case of discrete probability distributions). Variable random vector, or in more involved cases as a random process. In the abstract fiamework we can view as an element of the probability space (fi, 5, P) with the known probability measure (distribution) P. [Pg.2629]

Figure 6.10 Probability distributions for two variables input for Monte Carlo... Figure 6.10 Probability distributions for two variables input for Monte Carlo...
From the probability distributions for each of the variables on the right hand side, the values of K, p, o can be calculated. Assuming that the variables are independent, they can now be combined using the above rules to calculate K, p, o for ultimate recovery. Assuming the distribution for UR is Log-Normal, the value of UR for any confidence level can be calculated. This whole process can be performed on paper, or quickly written on a spreadsheet. The results are often within 10% of those generated by Monte Carlo simulation. [Pg.169]

If there is insufficient data to describe a continuous probability distribution for a variable (as with the area of a field in an earlier example), we may be able to make a subjective estimate of high, medium and low values. If those are chosen using the p85, p50, pi 5 cumulative probabilities described in Section 6.2.2, then the implication is that the three values are equally likely, and therefore each has a probability of occurrence of 1/3. Note that the low and high values are not the minimum and maximum values. [Pg.170]

In either case, first-order or continuous, it is usefiil to consider the probability distribution function for variables averaged over a spatial block of side L this may be the complete simulation box (in which case we... [Pg.2266]

This method has been devised as an effective numerical teclmique of computational fluid dynamics. The basic variables are the time-dependent probability distributions f x, f) of a velocity class a on a lattice site x. This probability distribution is then updated in discrete time steps using a detenninistic local rule. A carefiil choice of the lattice and the set of velocity vectors minimizes the effects of lattice anisotropy. This scheme has recently been applied to study the fomiation of lamellar phases in amphiphilic systems [92, 93]. [Pg.2383]

In attempting to reach decisions, it is useful to make assumptions or guesses about the populations involved. Such assumptions, which may or may not be true, are called statistical hypotheses and in general are statements about the probability distributions of the populations. A common procedure is to set up a null hypothesis, denoted by which states that there is no significant difference between two sets of data or that a variable exerts no significant effect. Any hypothesis which differs from a null hypothesis is called an alternative hypothesis, denoted by Tfj. [Pg.200]

The statistical average of a variable described by a probability distribution... [Pg.76]

To obtain thermodynamic averages over a canonical ensemble, which is characterized by the macroscopic variables (N, V, T), it is necessary to know the probability of finding the system at each and every point (= state) in phase space. This probability distribution, p(r, p), is given by the Boltzmann distribution function. [Pg.41]

Mathematica hasthisfunctionandmanyothersbuiltintoitssetof "add-on" packagesthatare standardwiththesoftware.Tousethemweloadthepackage "Statistics NormalDistribution The syntax for these functions is straightforward we specify the mean and the standard deviation in the normal distribution, and then we use this in the probability distribution function (PDF) along with the variable to be so distributed. The rest of the code is self-evident. [Pg.198]

The numerator is a random normally distributed variable whose precision may be estimated as V(N) the percent of its error is f (N)/N = f (N). For example, if a certain type of component has had 100 failures, there is a 10% error in the estimated failure rate if there is no uncertainty in the denominator. Estimating the error bounds by this method has two weaknesses 1) the approximate mathematics, and the case of no failures, for which the estimated probability is zero which is absurd. A better way is to use the chi-squared estimator (equation 2,5.3.1) for failure per time or the F-number estimator (equation 2.5.3.2) for failure per demand. (See Lambda Chapter 12 ),... [Pg.160]

The probability for the random, normally distributed variable X to obtain a value between some limits a and h is... [Pg.1126]

After defining fundamental terms used in probability and introducing set notation for events, we consider probability theorems facilitating tlie calculation of the probabilities of complex events. Conditional probability and tlie concept of independence lead to Bayes theorem and tlie means it provides for revision of probabilities on tlie basis of additional evidence. Random variables, llicir probability distributions, and expected values provide tlie means... [Pg.541]

The probability distribution of a randoni variable concerns tlie distribution of probability over tlie range of tlie random variable. The distribution of probability is specified by the pdf (probability distribution function). This section is devoted to general properties of tlie pdf in tlie case of discrete and continuous nmdoiii variables. Special pdfs finding e.xtensive application in liazard and risk analysis are considered in Chapter 20. [Pg.552]

Property 1 indicates tliat tlie pdf of a discrete random variable generates probability by substitution. Properties 2 and 3 restrict the values of f(x) to nonnegative real niunbers whose sum is 1. An example of a discrete probability distribution function (approaching a normal distribution - to be discussed in tlie next chapter) is provided in Figure 19.8.1. [Pg.553]

Anotlier fimction used to describe tlie probability distribution of a random variable X is tlie cumulative distribution function (cdf). If f(x) specifies tlie pdf of a random variable X, tlien F(x) is used to specify the cdf For both discrete and continuous random variables, tlie cdf of X is defined by ... [Pg.555]

The probability distribution of a random variable concerns the distribution of probability over tlie range of the random variable. Tlie distribution of probability is specified by the pdf (probability distribution function). [Pg.567]

In Section 20.2, equations for tlie reliability of series and parallel systems are established. Various reliability relations are developed in Section 20.3. Sections 20.4 and 20.5 introduce several probability distribution models lliat are extensively used in reliability calculations in hazard and risk analysis. Section 20.6 deals witli tlie Monte Carlo teclinique of mimicking observations on a random variable. Sections 20.7 and 20.8 are devoted to fault tree and event tree analyses, respectively. [Pg.571]

Where f(x) is tlie probability of x successes in n performances. One can show that the expected value of the random variable X is np and its variance is npq. As a simple example of tlie binomial distribution, consider tlie probability distribution of tlie number of defectives in a sample of 5 items drawn with replacement from a lot of 1000 items, 50 of which are defective. Associate success with drawing a defective item from tlie lot. Tlien the result of each drawing can be classified success (defective item) or failure (non-defective item). The sample of items is drawn witli replacement (i.e., each item in tlie sample is relumed before tlie next is drawn from tlie lot tlierefore the probability of success remains constant at 0.05. Substituting in Eq. (20.5.2) tlie values n = 5, p = 0.05, and q = 0.95 yields... [Pg.580]

Moments 92. Common Probability Distributions for Continuous Random Variables 94. Probability Distributions for Discrete Random Variables. Univariate Analysis 102. Confidence Intervals 103. Correlation 105. Regression 106. [Pg.1]

Common Probability Distributions for Continuous Random Variables... [Pg.94]

The conditional probability distribution function of the random variables fa, , fa given that the random variables fa, , fa+m have assumed the values xn+1, , xn+m respectively, can be defined, in most cases of interest to us, by means of the following procedure. To simplify the discussion, we shall only present the details of the derivation for the case of two random variables fa and fa. We begin by using the definition, Eq. (3-159), to write... [Pg.151]

Recall now that the letters in xx are chosen independently with the probability distribution p = (Pi, , > ) and when xx is sent the output is governed by the transition probabilities Pr( i). Thus, each of the terms d( ln,pn) in Eq. (4-123) is an independent random variable with the moment generating function... [Pg.231]

Uncertainties in amounts of products to be manufactured Qi, processing times %, and size factors Sij will influence the production time tp, whose uncertainty reflects the individual uncertainties that can be presented as probability distributions. The distributions for shortterm uncertainties (processing times and size factors) can be evaluated based on knowledge of probability distributions for the uncertain parameters, i.e. kinetic parameters and other variables used for the design of equipment units. The probability of not being able to meet the total demand is the probability that the production time is larger than the available production time H. Hence, the objective function used for deterministic design takes the form ... [Pg.504]

If the probability distribution of the data is or assumed Gaussian, several statistical measures are available for interpreting the data. These measures can be used to interpret the latent variables determined by a selected data analysis method. Those described here are a combination of statistical measures and graphical analysis. Taken together they provide an assessment of the statistical significance of the analysis. [Pg.55]

It does not contain a probabilistic modeling component that simulates variability therefore, it is not used to predict PbB probability distributions in exposed populations. Accordingly, the current version will not predict the probability that children exposed to lead in environmental media will have PbB concentrations exceeding a health-based level of concern (e.g., 10 pg/dL). Efforts are currently underway to explore applications of stochastic modeling methodologies to investigate variability in both exposure and biokinetic variables that will yield estimates of distributions of lead concentrations in blood, bone, and other tissues. [Pg.243]

If U0 and U1 were the functions of a sufficient number of identically distributed random variables, then AU would be Gaussian distributed, which is a consequence of the central limit theorem. In practice, the probability distribution Pq (AU) deviates somewhat from the ideal Gaussian case, but still has a Gaussian-like shape. The integrand in (2.12), which is obtained by multiplying this probability distribution by the Boltzmann factor exp (-[3AU), is shifted to the left, as shown in Fig. 2.1. This indicates that the value of the integral in (2.12) depends on the low-energy tail of the distribution - see Fig. 2.1. [Pg.37]

Among the methods discussed in this book, FEP is the most commonly used to carry out alchemical transformations described in Sect. 2.8 of Chap. 2. Probability distribution and TI methods, in conjunction with MD, are favored if there is an order parameter in the system, defined as a dynamical variable. Among these methods, ABF, derived in Chap. 4, appears to be nearly optimal. Its accuracy, however, has not been tested critically for systems that relax slowly along the degrees of freedom perpendicular to the order parameter. Adaptive histogram approaches, primarily used in Monte Carlo simulations - e.g., multicanonical, WL and, in particular, the transition matrix method - yield superior results in applications to phase transitions,... [Pg.505]

Geostatistics is on the basis of the concept of stochastic functions, in which a particular set of measured values are considered spatially dependent random variables. A random variable is a variable which can adopt a series of different values according to a probability distribution. [Pg.344]

A stochastic program is a mathematical program (optimization model) in which some of the problem data is uncertain. More precisely, it is assumed that the uncertain data can be described by a random variable (probability distribution) with sufficient accuracy. Here, it is further assumed that the random variable has a countable number of realizations that is modeled by a discrete set of scenarios co = 1,..., 2. [Pg.195]

Consider, in general, the overall problem consisting of m balances and divide it into m smaller subproblems, that is, we will be processing one equation at a time. Then, after the i th balance has been processed, a new value of the least squares objective (test function) can be computed. Let J, denote the value of the objective evaluated after the i th equation has been considered. The approach for the detection of a gross error in this balance is based on the fact that fa is a random variable whose probability distribution can be calculated. [Pg.137]


See other pages where Probability distributions variable is mentioned: [Pg.755]    [Pg.317]    [Pg.35]    [Pg.407]    [Pg.97]    [Pg.423]    [Pg.127]    [Pg.227]    [Pg.138]    [Pg.164]    [Pg.281]    [Pg.211]    [Pg.55]    [Pg.77]    [Pg.505]    [Pg.157]    [Pg.409]   
See also in sourсe #XX -- [ Pg.210 , Pg.211 ]




SEARCH



Probability distributions

Variables distributed

© 2024 chempedia.info