Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Primary recrystallisation

One disadvantage of using acetic anhydride is that with primary amines, traces of the diacctyl compound, RN(COCH3)2, niay be formed the chances of this secondary acetylation are, however, usually remote, and recrystallisation from an aqueous solvent will generally hydrolyse the diacetyl derivative rapidly back to the mono-acetyl compound. [Pg.107]

The hydrochloride of the amine may be prepared precisely as that of the primary amine. For recrystallisation, boil a suspension of the powdered salt in petroleum (b.p. 60-80°), and then add acetone slowly in small drops until the boiling suspension just becomes clear allow the stirred solution to cool until crystallisation starts, and then chill in ice-water before collecting the colourless plates of the hydrochloride, which after drying in a vacuum desiccator have m.p. 132-134°. [Pg.227]

Z>) Toluene-p-sulphonylotion (p. 247). Proceed as in 3(a), but using 1 5 g of toluene-p-sulphonyl chloride, either finely pow dered or in concentrated acetone solution. Note. The sulphonyl derivative of a primary amine is soluble in aqueous sodium hydroxide, and the final solution must be diluted and acidified to precipitate the product. Recrystallise and take the m.p. (M.ps., pp. 550-551.)... [Pg.374]

The chloroplatinates prepared as above are sufficiently pure for direct analysis without recrystallisation. The chloroplatinates of the amines are usually freely soluble in hot water, but recrystallisation (when required) should not be attempted until the process has been found to be successful with a small test-portion of the chloroplatinate. The chloroplatinates of many primary and secondary amines decompose in hot water, the amine being oxidised, and the chloroplatinate reduced to the metal some amines furthermore co-ordinate readily with the metal when the chloroplatinate is boiled with water and a mixed product is obtained on cooling. [Pg.450]

Dissolve 0 5 g. of the primary amine and 0-5 g. of pure phthaUc anhydride in 5 ml. of glacial acetic acid and reflux for 20-30 minutes. (If the amine salt is used, add 1 g. of sodium acetate.) The N-substituted phthaUmide separates out on cooling. Recrystallise it from alcohol or from glacial acetic acid. [Pg.423]

The best results are obtained with freshly prepared xanthhydrol (reduction of xanthone with sodium amalgam. Section VII,16). Dissolve 0 -25 g. of xanthhydrol and 0 -25g. of the primary sulphonamide in 10 ml. of glacial acetic acid. Shake for 2-3 minutes at the laboratory temperature and allow to stand for 60-90 minutes. Filter oflf the derivative, recrystallise it from dioxan-water (3 1), and dry at room temperature under water pump suction for 30 minutes. [Pg.558]

Method 1. Treat 2 0 g. of the mixture of amines with 40 ml. of 10 per cent, sodium hydroxide solution and add 4 g. (3 ml.) of benzenesulphonyl chloi de (or 4 g. of p-toluenesulphonyl chloride) in small portions. Warm on a water bath to complete the reaction. Acidify the alkaline solution with dilute hydrochloric acid when the sulphonamides of the primary and secondary amines are precipitated. Filter off the solid and wash it with a little cold water the tertiary amine will be present in the filtrate. To convert any disulphOnamide that may have been formed from the primary amine into the sulphonamide, boil the solid under reflux with 2 0 g. of sodium dissolved in 40 ml. of absolute ethyl alcohol for 30 minutes. Dilute with a little water and distil off the alcohol filter off the precipitate of the sulphonamide of the secondary amine. Acidify the filtrate with dilute hydrochloric acid to precipitate the derivative of the primary amine. Recrystallise the respective derivatives from alcohol or from dilute alcohol, and identify them inter alia by a determination of the m.p. [Pg.651]

If the presence of a disulphonyl derivative from a primary amine is suspected (e.., formation of a precipitate in alkaline solution even after dilution), reflux the precipitate, obtained after acidifyim , with a solution of I g. of sodium in 20 ml. of rectifled spirit for 15 minutes. Evaporate the alcohol, dilute with water, and filter if necessary acidify with dilute hydrochloric acid. Collect the sulphonyl derivative and recrystallise it from alcohol or dilute alcohol. [Pg.653]

The most versatile derivative from which the free base can be readily recovered is the picrate. This is very satisfactory for primary and secondary aliphatic amines and aromatic amines and is particularly so for heterocyclic bases. The amine, dissolv in water or alcohol, is treated with excess of a saturated solution of picric acid in water or alcohol, respectively, until separation of the picrate is complete. If separation does not occur, the solution is stirred vigorously and warmed for a few minutes, or diluted with a solvent in which the picrate is insoluble. Thus, a solution of the amine and picric acid in ethanol can be treated with petroleum ether to precipitate the picrate. Alternatively, the amine can be dissolved in alcohol and aqueous picric acid added. The picrate is filtered off, washed with water or ethanol and recrystallised from boiling water, ethanol, methanol, aqueous ethanol, methanol or chloroform. The solubility of picric acid in water and ethanol is 1.4 and 6.23 % respectively at 20°. [Pg.57]

Purification as their N-acetyl derivatives is satisfactory for primary, and to a limited extent secondary, amines. The base is refluxed with slightly more than one equivalent of acetic anhydride for half to one hour, cooled and poured into ice-cold water. The insoluble derivative is filtered off, dried, and recrystallised from water, ethanol, aqueous ethanol or benzene (CAUTION toxic ). The derivative can be hydrolysed to the parent amine by refluxing with 70% sulfuric acid for a half to one hour. The solution is cooled, poured onto ice, and made alkaline. The amine is steam distilled or extracted as above. Alkaline hydrolysis is very slow. [Pg.58]

Place a mixtiu of 0 5 g. of finely powdered thioimea, 0-5 g. of the alkyl halide and 5 ml. of alcohol in a test-tube or small fiask equipped with a refiux condenser. Reflux the mixture for a i)eriod depending upon the nature of the halide primary alkyl bromides and iodides, 10-20 minutes (according to the molecular weight) secondary alkyl bromides or iodides, 2-3 hours alkyl chlorides, 3-6 hours polymethylene dibromides or di-iodides, 20-60 minutes. Then add 0 6 g. of picric acid, boil until a clear solution is obtained, and cool. If no precipitate is obtained, add a few drops of water. Recrystallise the resulting S-alkyl-iao-thiuronium picrate from alcohol. [Pg.292]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6 g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. Allow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type C,H5(CHj) NH2), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilate hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystallise it from alcohol or dilute alcohol. Finally, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Experiments.—Being a primary hydrazide (of carbamic acid), semicarbazide reduces ammoniacal silver solutions and Fehling s solution. It reacts readily with aldehydes and ketones with the elimination of water and formation of semicarbazones, which, since they are more easily hydrolysed than are phenylhydrazones and oximes, are to be preferred to the latter for purposes of separation and purification of carbonyl compounds. Shake an aqueous solution of the hydrochloride (prepared as described above) with a few drops of benzaldehyde, isolate the semicarbazone and purify it by recrystallisation from alcohol. Melting point 214° decomp. Benzaldehyde semicarbazone is decomposed into its constituents by gentle warming with concentrated hydrochloric acid. [Pg.135]

Sintering and recrystallisation. Catalysts often suffer during use from a gradual increase in the average size of the crystallites or growth of the primary particles. This is usually called sintering. The occurrence of sintering leads to... [Pg.378]

A copper-chromium oxide on pumice catalyst has particular value for the dehydrogenation of primary and secondary alcohols to the corresponding carbonyl compounds (see Section 5.6.1, p. 581). Dissolve 10.4g of barium nitrate (AnalaR) in 280 ml of water at about 80 °C and add to this hot solution 87 g of copper(n) nitrate trihydrate (AnalaR) stir the mixture and heat until a homogeneous solution results. Prepare a solution of 50.4 g of recrystallised ammonium dichromate in a mixture of 200 ml of water and 75 ml of concentrated ammonia solution (d 0.880). To the ammonium chromate solution at 25-30 °C add the hot (80 °C) nitrate solution in a thin stream with stirring. Allow the mixture to cool and filter off the yellowish-brown precipitate with suction press with a glass stopper and suck as dry as possbile. Transfer the... [Pg.427]

To an ice-cold mixture of 1.0 ml of concentrated sulphuric acid and 5 ml of saturated aqueous potassium dichromate solution, add 2 ml of the alcohol or its concentrated aqueous solution. If the alcohol is not miscible with the reagent, shake the reaction mixture vigorously. After 5 minutes, dilute with an equal volume of water, distil and collect the first few ml of the aqueous distillate in a test tube cooled in ice. (Aldehydes and ketones are volatile in steam.) Test a portion of the distillate for a carbonyl compound with 2,4-dinitrophenylhydrazine reagent (p. 1218). If a solid derivative is obtained, indicating that the compound was a primary or secondary alcohol, test a further portion with SchifFs reagent (p. 1291) to distinguish between the two possibilities. The derivative may be recrystallised the m.p. may give a preliminary indication of the identity of the alcohol. [Pg.1241]

The Schotten-Baumann method of benzoylation with benzoyl chloride in the presence of aqueous sodium hydroxide may be used. Full details are given under Primary and secondary amines, Section 9.6.21, p. 1273. Alternatively, dissolve 1.0 g of the phenol in 3 ml of dry pyridine and add 0.5 g of benzoyl chloride. After the initial reaction has subsided, warm the mixture over a small flame for a minute or two and pour, with vigorous stirring, into 10-15 ml of water. Allow the precipitate to settle, decant the supernatant liquid, stir the residue thoroughly with 5-10 ml of m sodium carbonate solution, filter and recrystallise from ethanol or from light petroleum. [Pg.1248]


See other pages where Primary recrystallisation is mentioned: [Pg.10]    [Pg.11]    [Pg.15]    [Pg.10]    [Pg.11]    [Pg.15]    [Pg.336]    [Pg.32]    [Pg.57]    [Pg.58]    [Pg.421]    [Pg.104]    [Pg.349]    [Pg.66]    [Pg.51]    [Pg.52]    [Pg.51]    [Pg.52]    [Pg.767]    [Pg.1289]    [Pg.308]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Recrystallisation

© 2024 chempedia.info