Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Primary process transfer

According to the electron-transfer mechanism of spectral sensitization (92,93), the transfer of an electron from the excited sensitizer molecule to the silver haHde and the injection of photoelectrons into the conduction band ate the primary processes. Thus, the lowest vacant level of the sensitizer dye is situated higher than the bottom of the conduction band. The regeneration of the sensitizer is possible by reactions of the positive hole to form radical dications (94). If the highest filled level of the dye is situated below the top of the valence band, desensitization occurs because of hole production. [Pg.496]

Although the electrostatic potential on the surface of the polyelectrolyte effectively prevents the diffusional back electron transfer, it is unable to retard the very fast charge recombination of a geminate ion pair formed in the primary process within the photochemical cage. Compartmentalization of a photoactive chromophore in the microphase structure of the amphiphilic polyelectrolyte provides a separated donor-acceptor system, in which the charge recombination is effectively suppressed. Thus, with a compartmentalized system, it is possible to achieve efficient charge separation. [Pg.92]

Some authors have described the time evolution of the system by more general methods than time-dependent perturbation theory. For example, War-shel and co-workers have attempted to calculate the evolution of the function /(r, Q, t) defined by Eq. (3) by a semi-classical method [44, 96] the probability for the system to occupy state v]/, is obtained by considering the fluctuations of the energy gap between and 11, which are induced by the trajectories of all the atoms of the system. These trajectories are generated through molecular dynamics models based on classical equations of motion. This method was in particular applied to simulate the kinetics of the primary electron transfer process in the bacterial reaction center [97]. Mikkelsen and Ratner have recently proposed a very different approach to the electron transfer problem, in which the time evolution of the system is described by a time-dependent statistical density operator [98, 99]. [Pg.22]

Two different mechanisms are assumed. With <-butyl hydroperoxide an actual hydrogen abstraction occurs [Eq. (50)], while with peroxy-disulfate the primary process is an electron transfer [Eq. (51)] deprotonation [Eq. (52)] follows. [Pg.168]

Primary Processes and Energy Transfer Consistent Terms and Definitions... [Pg.181]

Further work by Anson s group sought to find the effects that would cause the four-electron reaction to occur as the primary process. Studies with ruthenated complexes [[98], and references therein], (23), demonstrated that 7T back-bonding interactions are more important than intramolecular electron transfer in causing cobalt porphyrins to promote the four-electron process over the two-electron reaction. Ruthenated complexes result in the formation of water as the product of the primary catalytic process. Attempts to simulate this behavior without the use of transition-metal substituents (e.g. ruthenated moieties) to enhance the transfer of electron density from the meso position to the porphyrin ring [99] met with limited success. Also, the use of jO-hydroxy substituents produced small positive shifts in the potential at which catalysis occurs. [Pg.545]

The net result of a photochemical redox reaction often gives very little information on the quantum yield of the primary electron transfer reaction since this is in many cases compensated by reverse electron transfer between the primary reaction products. This is equally so in homogeneous as well as in heterogeneous reactions. While the reverse process in homogeneous reactions can only by suppressed by consecutive irreversible chemical steps, one has a chance of preventing the reverse reaction in heterogeneous electron transfer processes by applying suitable electric fields. We shall see that this can best be done with semiconductor or insulator electrodes and that there it is possible to study photochemical primary processes with the help of such electrochemical techniques 5-G>7>. [Pg.33]

Recently, the electron-transfer kinetics in the DSSC, shown as a schematic diagram in Fig. 10, have been under intensive investigation. Time-resolved laser spectroscopy measurements are used to study one of the most important primary processes—electron injection from dye photosensitizers into the conduction band of semiconductors [30-47]. The electron-transfer rate from the dye photosensitizer into the semiconductor depends on the configuration of the adsorbed dye photosensitizers on the semiconductor surface and the energy gap between the LUMO level of the dye photosensitizers and the conduction-band level of the semiconductor. For example, the rate constant for electron injection, kini, is given by Fermi s golden rule expression ... [Pg.136]

Electron transfer from I- into the oxidized Ru photosensitizer (cation), or regeneration of the Ru photosensitizer, is one of the primary processes needed to achieve effective charge separation. The kinetics of this reaction has also been investigated by time-resolved laser spectroscopy [48,51]. The electron-transfer rate from I into the Ru(III) cation of the N3 dye was estimated to be 100 nsec... [Pg.139]

These rules also predict the nature of photoproducts expected in a metal-sensitized reactions. From the restrictions imposed by conservation of spin, we expect different products for singlet-sensitized and triplet-sensitized reactions. The Wigner spin rule is utilized to predict the outcome of photophysical processes such as, allowed electronic states of triplet-triplet annihilation processes, quenching by paramagnetic ions, electronic energy transfer by exchange mechanism and also in a variety of photochemical primary processes leading to reactant-product correlation. [Pg.123]

The ultrafast photoreactions in PNS of these proteins take place immediately after conversion from the FC state to vibrationally unrelaxed or only partially relaxed FI state [1-3]. For PYP [1] and Rh [3], the primary process is twisting of the chromophore, which causes the ultrafast fluorescence quenching, in the course of the isomerization, while the primary process for FP [2] is the ultrafast electron transfer leading to the fluorescence quenching reaction in PNS. Thus, in spite of the different molecular structures of PYP, Rh and FP chromophores and different kind of photoinduced reactions, these photoresponsive proteins show ultrafast and highly efficient photoreactions from FI state of similar nature (vibrationally unrelaxed or only partially relaxed), suggesting the supremely important role of the PNS controlling the reactions. [Pg.410]

There has been some speculation as to whether the mercury-sensitized decomposition of cyclopropane involves energy transfer or radical formation in the primary process.508... [Pg.141]

Cyclic voltammetry can (i) determine the electrochemical reversibility of the primary oxidation (or reduction) step (ii) allow the formal potential, E°, of the reversible process to be estimated (iii) provide information on the number of electrons, n, involved in the primary process and (iv) allow the rate constant for the decomposition of the M"+ species to be measured. Additional information can often be obtained if intermediates or products derived from M"+ are themselves electroactive, since peaks associated with their formation may be apparent in the cyclic voltam-mogram. The idealized behaviour illustrated by Scheme 1 is a relatively simple process more complicated processes such as those which involve further electron transfer following the chemical step, pre-equilibria, adsorption of reactants or products on the electrode surface, or the attack of an electrogenerated product on the starting material, are also amenable to analysis. [Pg.475]

The primary process of photosynthesis (in both photosystems) is an electron transfer reaction from the electronically excited chlorophyll molecule to an electron acceptor, which is in most cases a quinone. This primary electron acceptor can then hand over its extra electron to other, lower energy, acceptors in electron transport chains which can be used to build up other molecules needed by the organism (in particular adenosine triphosphate ATP). The complete process of photosynthesis is therefore much... [Pg.165]


See other pages where Primary process transfer is mentioned: [Pg.207]    [Pg.146]    [Pg.389]    [Pg.48]    [Pg.239]    [Pg.59]    [Pg.52]    [Pg.22]    [Pg.401]    [Pg.80]    [Pg.568]    [Pg.763]    [Pg.10]    [Pg.12]    [Pg.473]    [Pg.21]    [Pg.40]    [Pg.219]    [Pg.54]    [Pg.56]    [Pg.171]    [Pg.242]    [Pg.207]    [Pg.125]    [Pg.201]    [Pg.24]    [Pg.84]    [Pg.207]    [Pg.499]    [Pg.199]    [Pg.99]    [Pg.1118]    [Pg.1284]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Primary Processing

Primary process

Transfer primary

© 2024 chempedia.info