Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Primary alcohol reactions involving

Theoretically, the mechanism for ethoxylated alcohol sulfation is similar to primary alcohol sulfation, involving the rapid formation of a metastable product. The stoichiometry of this almost instantaneous and highly exothermic initial reaction corresponds again to more than one molecule of S03 per molecule of feedstock (Table 4). The desired ethoxylate acid sulfate product formed is... [Pg.659]

The SnI mechanism is generally accepted to be correct for the reaction of tertiary and secondary alcohols with hydrogen halides It is almost certainly not correct for methyl alcohol and primary alcohols because methyl and primary carbocations are believed to be much too unstable and the activation energies for their formation much too high for them to be reasonably involved The next section describes how methyl and primary alcohols are converted to their corresponding halides by a mechanism related to but different from S l... [Pg.163]

It IS important to note that although methyl and primary alcohols react with hydro gen halides by a mechanism that involves fewer steps than the corresponding reactions of secondary and tertiary alcohols fewer steps do not translate to faster reaction rates Remember the order of reactivity of alcohols with hydrogen halides is tertiary > sec ondary > primary > methyl Reaction rate is governed by the activation energy of the slowest step regardless of how many steps there are... [Pg.165]

MetaUic ions are precipitated as their hydroxides from aqueous caustic solutions. The reactions of importance in chlor—alkali operations are removal of magnesium as Mg(OH)2 during primary purification and of other impurities for pollution control. Organic acids react with NaOH to form soluble salts. Saponification of esters to form the organic acid salt and an alcohol and internal coupling reactions involve NaOH, as exemplified by reaction with triglycerides to form soap and glycerol,... [Pg.514]

Nearly all of the benzyl chloride [100-44-7], henzal chloride [98-87-3], and hen zotrichl oride /P< -(97-i manufactured is converted to other chemical intermediates or products by reactions involving the chlorine substituents of the side chain. Each of the compounds has a single primary use that consumes a large portion of the compound produced. Benzyl chloride is utilized in the manufacture of benzyl butyl phthalate, a vinyl resin plasticizer benzal chloride is hydrolyzed to benzaldehyde hen zotrichl oride is converted to benzoyl chloride. Benzyl chloride is also hydrolyzed to benzyl alcohol, which is used in the photographic industry, in perfumes (as esters), and in peptide synthesis by conversion to benzyl chloroformate [501-53-1] (see Benzyl ALCOHOL AND p-PHENETHYL ALCOHOL CARBONIC AND CARBONOCm ORIDIC ESTERS). [Pg.58]

Most other oxidizing agents, such as chromium trioxide (0rO3) in aqueous acid, oxidize primary alcohols directly to carboxylic acids. An aldehyde is involved as an intermediate in this reaction but can t usually be isolated because it is further oxidized too rapidly. [Pg.624]

The oxo and modified oxo process involve the reaction of mixed a- and internal olefins with hydrogen and carbon monoxide to give predominantly linear primary alcohols, although both processes yield some branched alcohols. [Pg.672]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

A facile method for the oxidation of alcohols to carbonyl compounds has been reported by Varma et al. using montmorillonite K 10 clay-supported iron(III) nitrate (clayfen) under solvent-free conditions [100], This MW-expedited reaction presumably proceeds via the intermediacy of nitrosonium ions. Interestingly, no carboxylic acids are formed in the oxidation of primary alcohols. The simple solvent-free experimental procedure involves mixing of neat substrates with clayfen and a brief exposure of the reaction mixture to irradiation in a MW oven for 15-60 s. This rapid, ma-nipulatively simple, inexpensive and selective procedure avoids the use of excess solvents and toxic oxidants (Scheme 6.30) [100]. Solid state use of clayfen has afforded higher yields and the amounts used are half of that used by Laszlo et al. [17,19]. [Pg.197]

Nitroxyl radicals (AmO ) are known to react rapidly with alkyl radicals and efficiently retard the radical polymerization of hydrocarbons [7]. At the same time, only aromatic nitroxyls are capable of reacting with alkylperoxyl radicals [10,39] and in this case the chain termination in the oxidation of saturated hydrocarbons occurs stoichiometrically. However, in the processes of oxidation of alcohols, alkenes, and primary and secondary aliphatic amines in which the chain reaction involves the HOT, >C(0H)02 , and >C(NHR)02 radicals, possessing the... [Pg.577]

A case of the addition of an allylstannane to aldehydes has been reported by Tagliavini to proceed with appreciable enantioselectivity (Scheme 6.15) [40]. A notable feature of the Zr-catalyzed transformations is that they proceed more rapidly than the corresponding Ti-catalyzed processes reported by the same research team (see Scheme 6.16). Furthermore, C—C bond formation is significantly more efficient when the reactions are carried out in the presence of 4 A molecular sieves the mechanistic rationale for this effect is not known. It should be noted that alkylations involving aliphatic aldehydes are relatively low-yielding, presumably as the result of competitive hydride transfer and formation of the reduced primary alcohol. [Pg.197]

The kinetics of melamine crosslinking have been found to depend strongly on the reaction medium (9-11). Model studies in solution for example reveal an activation energy of 96 kJ/mol for the reaction of 1 with primary and secondary alcohols, compared with 52 kJ/mol in a polymer network. Meijer (IQ.) has suggested that the key to this difference lies in the removal of the condensation product ROH by evaporation, particularly in crosslinking reactions involving equilibria. Further... [Pg.93]

Several characterized NRPSs utilize alternative methods for chain termination. In some synthetases, the TE domain of the final module is replaced by an NAD(P)H-dependent reductase domain. Reduction of a peptidyl-S-PCP substrate through a two-electron reaction leads to the formation of a transient aldehyde, which is subsequently converted into a cyclic imine or hemiaminal through intramolecular cyclization. This two-electron reaction is utilized in the biosynthesis of nostocyclopeptides, the saframycins, ° and anthramycin. Alternatively, a four-electron reduction to the primary alcohol is observed in the biosynthesis of mycobacterial peptidolipids, linear gramicidin," " the myxalamides, lyngbyatoxin, " and myxochelin A 75,76 alternative four-electron reduction pathway involving aldehyde formation, transamination, and reduction to a primary amine occurs in the biosynthesis of myxochelin B. ... [Pg.633]


See other pages where Primary alcohol reactions involving is mentioned: [Pg.120]    [Pg.120]    [Pg.96]    [Pg.95]    [Pg.27]    [Pg.293]    [Pg.82]    [Pg.335]    [Pg.105]    [Pg.170]    [Pg.230]    [Pg.207]    [Pg.702]    [Pg.103]    [Pg.112]    [Pg.174]    [Pg.607]    [Pg.254]    [Pg.256]    [Pg.223]    [Pg.786]    [Pg.1065]    [Pg.1243]    [Pg.48]    [Pg.148]    [Pg.373]    [Pg.256]    [Pg.59]    [Pg.119]    [Pg.176]    [Pg.656]    [Pg.252]    [Pg.86]    [Pg.197]    [Pg.97]    [Pg.171]   
See also in sourсe #XX -- [ Pg.84 ]

See also in sourсe #XX -- [ Pg.442 ]




SEARCH



Alcohols, primary

© 2024 chempedia.info