Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure virial equation state

There is another commonly used series equation of state, sometimes called the pressure virial equation of state ... [Pg.171]

An equation of state that is a power series in P is called the pressure virial equation... [Pg.22]

The pressure virial equation of state was shown in Eq. (1.3-4), and it was shown in an example that A2, the second pressure virial coefficient, is equal to B2, the second virial coefficient. Find an expression for (dS/dP)j- for a gas obeying the pressure virial equation of state truncated at the A2 term. [Pg.165]

Derive the expression for the entropy change for an isothermal pressure change of a gas described by this truncated pressure virial equation of state. [Pg.165]

Calculate AS for the expansion of 1.000 mol of argon from 10.00 atm to 1.000 atm at 298.15 K, assuming the truncated pressure virial equation of state. Compare your result with that obtained... [Pg.166]

This chapter presents a general method for estimating nonidealities in a vapor mixture containing any number of components this method is based on the virial equation of state for ordinary substances and on the chemical theory for strongly associating species such as carboxylic acids. The method is limited to moderate pressures, as commonly encountered in typical chemical engineering equipment, and should only be used for conditions remote from the critical of the mixture. [Pg.26]

The virial equation of state is a power series in the reciprocal molar volume or in the pressure ... [Pg.27]

This chapter uses an equation of state which is applicable only at low or moderate pressures. Serious error may result when the truncated virial equation is used at high pressures. [Pg.38]

Enthalpies are referred to the ideal vapor. The enthalpy of the real vapor is found from zero-pressure heat capacities and from the virial equation of state for non-associated species or, for vapors containing highly dimerized vapors (e.g. organic acids), from the chemical theory of vapor imperfections, as discussed in Chapter 3. For pure components, liquid-phase enthalpies (relative to the ideal vapor) are found from differentiation of the zero-pressure standard-state fugacities these, in turn, are determined from vapor-pressure data, from vapor-phase corrections and liquid-phase densities. If good experimental data are used to determine the standard-state fugacity, the derivative gives enthalpies of liquids to nearly the same precision as that obtained with calorimetric data, and provides reliable heats of vaporization. [Pg.82]

VPLQFT is a computer program for correlating binary vapor-liquid equilibrium (VLE) data at low to moderate pressures. For such binary mixtures, the truncated virial equation of state is used to correct for vapor-phase nonidealities, except for mixtures containing organic acids where the "chemical" theory is used. The Hayden-0 Connell (1975) correlation gives either the second virial coefficients or the dimerization equilibrium constants, as required. [Pg.211]

Real gases follow the ideal-gas equation (A2.1.17) only in the limit of zero pressure, so it is important to be able to handle the tliemiodynamics of real gases at non-zero pressures. There are many semi-empirical equations with parameters that purport to represent the physical interactions between gas molecules, the simplest of which is the van der Waals equation (A2.1.50). However, a completely general fonn for expressing gas non-ideality is the series expansion first suggested by Kamerlingh Onnes (1901) and known as the virial equation of state ... [Pg.354]

The volumetric properties of fluids are conveniently represented by PVT equations of state. The most popular are virial, cubic, and extended virial equations. Virial equations are infinite series representations of the compressibiHty factor Z, defined as Z = PV/RT having either molar density, p[ = V ), or pressure, P, as the independent variable of expansion ... [Pg.484]

The PirialExpansion. Many equations of state have been proposed for gases, but the virial equation is the only one having a firm basis in theory (1,3). The pressure-expHcit form of the virial expansion is... [Pg.233]

Virial Equations of State The virial equation in density is an infinite-series representation of the compressiDility factor Z in powers of molar density p (or reciprocal molar volume V" ) about the real-gas state at zero density (zero pressure) ... [Pg.529]

An alternative form of the virial equation expresses Z as an expansion in powers of pressure about the real-gas state at zero pressure (zero density) ... [Pg.529]

Gamma/Phi Approach For many XT E systems of interest the pressure is low enough that a relatively simple equation of state, such as the two-term virial equation, is satisfactoiy for the vapor phase. Liquid-phase behavior, on the other hand, may be conveniently described by an equation for the excess Gibbs energy, from which activity coefficients are derived. The fugacity of species i in the liquid phase is then given by Eq. (4-102), written... [Pg.535]

A. Milchev, K. Binder. Osmotic pressure, atomic pressure and the virial equation of state of polymer solutions Monte Carlo simulations of a bead-spring model. Macromol Theory Simul 5 915-929, 1994. [Pg.630]

The next level of approximation is valid to higher pressures. It assumes that the gas mixture obeys the virial equation of state, with the third, fourth and higher, virial coefficients equal to zero. Thus... [Pg.265]

Hm for steam + n-heptane calculated by the above method is shown by the dashed lines in figure 6. Considering the simplicity of the model and the fact that no adjustable parameters have been used, agreement with experiment is remarkable. For mixtures of steam + n-hexane, benzene and cyclohexane agreement with experiment is much the same. At low densities the model reproduces the curvature of the lines through the results better than the virial equation of state. The method fails to fully reproduce the downward turn of the experimental curves at pressures near saturation, but does marginally better in this region than the P-R equation with k. = -0.3. At supercritical temperatures the model seems to... [Pg.446]

Flow calorimetric measurements of the excess enthalpy of a steam + n-heptane mixture over the temperature range 373 to 698 K and at pressures up to 12.3 MPa are reported. The low pressure measurements are analysed in terms of the virial equation of state using an association model. An extension of this approach, the Separated Associated Fluid Interaction Model, fits the measurements at high pressures reasonably well. [Pg.446]

At moderate pressures, the virial equation of state, truncated after the second virial coefficient, can be used to describe the vapor phase. As suggested by Hirschfelder, et. al. (1 3) the temperature dependence of the virial coefficients is expressed... [Pg.732]

The virial equation of state represents the pressure as a polynomial series in the inverse molar volume as... [Pg.73]

The mathematical relationship between pressure, volume, temperature, and number of moles of a gas at equilibrium is given by its equation of state. The most well-known equation of state is the ideal gas law, PV=RT, where P = the pressure of the gas, V = its molar volume (V/n), n = the number of moles of gas, R = the ideal gas constant, and T = the temperature of the gas. Many modifications of the ideal gas equation of state have been proposed so that the equation can fit P-V-T data of real gases. One of these equations is called the virial equation of state which accounts for nonideality by utilizing a power series in p, the density. [Pg.579]


See other pages where Pressure virial equation state is mentioned: [Pg.8]    [Pg.171]    [Pg.38]    [Pg.170]    [Pg.15]    [Pg.248]    [Pg.348]    [Pg.145]    [Pg.149]    [Pg.658]    [Pg.970]    [Pg.539]    [Pg.535]    [Pg.439]    [Pg.140]    [Pg.277]    [Pg.293]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Equation virial

Equations virial equation

Pressure equation

Pressure virial

State pressure

Virial

Virial equation state

© 2024 chempedia.info