Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

After bath preparations

High-temperature calcination of chromite ore and soda ash leads to oxidation of chromium to sodium chromate, which is leached out by water. After acidifying, sodium dichromate, the basic material for chromium chemicals, is formed. Chromium trioxide CrOj, chromic add, prepared from sodium dichromate, is used for preparing the baths for chromium plating. Hexavalent chromium chemicals are also still used to some extent in pigments, for corrosion protection and for timber treatment Chromic add is also used for video/audio tapes although iron-based tapes have taken over more than 90% of this market. [Pg.581]

Carry out this preparation precisely as described for the a-compound, but instead of zinc chloride add 2 5 g. of anhydrous powdered sodium acetate (preparation, p. 116) to the acetic anhydride. When this mixture has been heated on the water-bath for 5 minutes, and the greater part of the acetate has dissolved, add the 5 g. of powdered glucose. After heating for I hour, pour into cold water as before. The viscous oil crystallises more readily than that obtained in the preparation of the a-compound. Filter the solid material at the pump, breaking up any lumps as before, wash thoroughly with water and drain. (Yield of crude product, io o-io 5 g.). Recrystallise from rectified spirit until the pure -pentacetylglucose is obtained as colourless crystals, m.p- 130-131° again two recrystallisations are usually sufficient for this purpose. [Pg.142]

Prepare a mixture of the above compounds in the stated quantities in a flask fitted with a reflux water-condenser. Shake the mixture thoroughly, and then heat it in an oil-bath at 145-150° for 3 hours. After about 10 minutes heating, the mixture gives a clear red solution which should be shaken occasionally during the subsequent heating. [Pg.238]

Example. Dissolve 0 3 g. of />-chlorobenzoic ncid in a small quantity of warm ethanol (about 10 ml.), and ctlrefully add 5 o aqueous sodium hydroxide drop- wise until the solution is just pink to phenolphthalein. Evaporate to dryness on a water-bath. Dissolve the sodium -chlorobenzoate in a minimum of water, add a solution of 0-5 g. of phenacyl bromide in ethanol (about 5 ml.), and boil the mixture under reflux for i hour, and then cool. The phenacyl ester usually ciy stallises on cooling if it does not, add water dropnise with stirring to the chilled solution until separation of the ester just begins. Filter the ester, wash on the filter with water, drain and recrystallise from ethanol m.p. 90 . The /)-bromophenacyl ester is similarly prepared, and after recrystallisation from aqueous ethanol has m.p. 128 . (M.ps., pp. 543-545.)... [Pg.350]

Prepare a Grignard reagent from 24 -5 g. of magnesium turnings, 179 g. (157 ml.) of n-heptyl bromide (Section 111,37), and 300 ml. of di-n-butyl ether (1). Cool the solution to 0° and, with vigorous stirring, add an excess of ethylene oxide. Maintain the temperature at 0° for 1 hour after the ethylene oxide has been introduced, then allow the temperature to rise to 40° and maintain the mixture at this temperature for 1 hour. Finally heat the mixture on a water bath for 2 hours. Decompose the addition product and isolate the alcohol according to the procedure for n-hexyl alcohol (Section 111,18) the addition of benzene is unnecessary. Collect the n-nonyl alcohol at 95-100°/12 mm. The yield is 95 g. [Pg.254]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

In a 1 or 1-5 htre round-bottomed flask prepare a solution of 53-5 g. of o-toluidine in 170 ml. of 48 per cent, hydrobromic acid, cool to 5° by immersion in a bath of ice and salt. Diazotise by the gradual addition of a solution of 36 -5 g. of sodium nitrite in 50 ml. of water stopper the flask after each addition and shake until all red fumes are absorbed. Keep the temperature between 5° and 10°. When the diazotisation is complete, add 2 g. of copper powder or copper bronze, attach a reflux condenser to the flask, and heat very cautiously on a water bath. Immediately evolution of gas occurs, cool the flask in crushed ice unless the... [Pg.606]

Dissolve 46-5 g. (45-5 ml.) of aniUne in a mixture of 126 ml. of concentrated hydrochloric acid and 126 ml. of water contained in a 1-htre beaker. Cool to 0-5° in a bath of ice and salt, and add a solution of 36-5 g. of sodium nitrite in 75 ml. of water in small portions stir vigorously with a thermometer (1) and maintain the temperature below 10°, but preferably at about 5° by the addition of a httle crushed ice if necessary. The diazotisation is complete when a drop of the solution diluted with 3-4 drops of water gives an immediate blue colouration with potassium iodide - starch paper the test should be performed 3-4 minutes after the last addition of the nitrite solution. Prepare a solution of 76 g. of sodium fluoborate (2) in 150 ml. of water, cool, and add the chilled solution slowly to the diazonium salt solution the latter must be kept well stirred (1) and the temperature controlled so that it is below 10°. Allow to stand for 10 minutes with frequent stirring. Filter... [Pg.609]

I) An alternative procedure is to cool the solution containing the sodium sul. phanilate and sodium nitrite in a bath of crushed ice to about 5° and then add 10-5 ml. of concentrated hydrochloric acid diluted with an equal volume of water slowly and with stirring the temperature must not be allowed to rise above 10 and an excess of nitrous acid should be present (the solution is tested after standing for 5 minutes). The subsequent stages in the preparation—addition of dimethyl-aniline solution, etc.—are as above. [Pg.624]

In a 500 ml. wide-mouthed reagent bottle place a cold solution of 25 g. of sodium hydroxide in 250 ml. of water and 200 ml. of alcohol (1) equip the bottle with a mechanical stirrer and surround it with a bath of water. Maintain the temperature of the solution at 20-25°, stir vigorously and add one-half of a previously prepared mixture of 26-5 g. (25 -5 ml.) of purebenzaldehyde (Section IV,115) and 7 -3 g. (9-3 ml.) of A.R. acetone. A flocculent precipitate forms in 2-3 minutes. After 15 minutes add the remainder of the benzaldehyde - acetone mixture. Continue the stirring for a further 30 minutes. Filter at the pump and wash with cold water to eliminate the alkali as completely as possible. Dry the solid at room temperature upon filter paper to constant weight 27 g. of crude dibenzalacetone, m.p. 105-107°, are obtained. Recrystallise from hot ethyl acetate (2-5 ml. per gram) or from hot rectified spirit. The recovery of pure dibenzalacetone, m.p. 112°, is about 80 per cent. [Pg.717]

Prepare a solution containing about 100 g, of potassium hypochlorite from commercial calcium hypochlorite ( H.T.H. ) as detailed under -Dimethylacrylic Acid, Section 111,142, Note 1, and place it in a 1500 ml. three-necked flask provided with a thermometer, a mechanical stirrer and a reflux condenser. Warm the solution to 55° and add through the condenser 85 g, of p-acetonaphthalene (methyl p-naphthyl ketone) (1). Stir the mixture vigorously and, after the exothermic reaction commences, maintain the temperature at 60-70° by frequent cooling in an ice bath until the temperature no longer tends to rise (ca. 30 minutes). Stir the mixture for a further 30 minutes, and destroy the excess of hypochlorite completely by adding a solution of 25 g. of sodium bisulphite in 100 ml. of water make sure that no hypochlorite remains by testing the solution with acidified potassium iodide solution. Cool the solution, transfer the reaction mixture to a 2-litre beaker and cautiously acidify with 100 ml. of concentrated hydrochloric acid. Filter the crude acid at the pump. [Pg.766]


See other pages where After bath preparations is mentioned: [Pg.68]    [Pg.378]    [Pg.178]    [Pg.68]    [Pg.33]    [Pg.810]    [Pg.475]    [Pg.936]    [Pg.425]    [Pg.477]    [Pg.121]    [Pg.79]    [Pg.423]    [Pg.150]    [Pg.89]    [Pg.50]    [Pg.496]    [Pg.18]    [Pg.112]    [Pg.242]    [Pg.459]    [Pg.166]    [Pg.189]    [Pg.193]    [Pg.194]    [Pg.197]    [Pg.240]    [Pg.256]    [Pg.352]    [Pg.565]    [Pg.588]    [Pg.604]    [Pg.638]    [Pg.718]    [Pg.814]    [Pg.842]    [Pg.857]   
See also in sourсe #XX -- [ Pg.423 ]




SEARCH



© 2024 chempedia.info