Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preliminary chemical/phase equilibrium

In connection with the thermodynamic state of water in SAH, it is appropriate to consider one more question, i.e., their ability to accumulate water vapor contained in the atmosphere and in the space of soil pores. It is clear that this possibility is determined by the chemical potential balance of water in the gel and in the gaseous phase. In particular, in the case of saturated water vapor, the equilibrium swelling degree of SAH in contact with vapor should be the same as that of the gel immersed in water. However, even at a relative humidity of 99%, which corresponds to pF 4.13, SAH practically do not swell (w 3-3.5 g g1). In any case, the absorbed water will be unavailable for plants. Therefore, the only real possibility for SAH to absorb water is its preliminary condensation which can be attained through the presence of temperature gradients. [Pg.126]

In contrast to kinetic models reported previously in the literature (18,19) where MO was assumed to adsorb at a single site, our preliminary data based on DRIFT results suggest that MO exists as a diadsorbed species with both the carbonyl and olefin groups being coordinated to the catalyst. This diadsorption mode for a-p unsaturated ketones and aldehydes on palladium have been previously suggested based on quantum chemical predictions (20). A two parameter empirical model (equation 4) where - rA refers to the rate of hydrogenation of MO, CA and PH refer to the concentration of MO and the hydrogen partial pressure respectively was developed. This rate expression will be incorporated in our rate-based three-phase non-equilibrium model to predict the yield and selectivity for the production of MIBK from acetone via CD. [Pg.265]

To test the validity of the extended Pitzer equation, correlations of vapor-liquid equilibrium data were carried out for three systems. Since the extended Pitzer equation reduces to the Pitzer equation for aqueous strong electrolyte systems, and is consistent with the Setschenow equation for molecular non-electrolytes in aqueous electrolyte systems, the main interest here is aqueous systems with weak electrolytes or partially dissociated electrolytes. The three systems considered are the hydrochloric acid aqueous solution at 298.15°K and concentrations up to 18 molal the NH3-CO2 aqueous solution at 293.15°K and the K2CO3-CO2 aqueous solution of the Hot Carbonate Process. In each case, the chemical equilibrium between all species has been taken into account directly as liquid phase constraints. Significant parameters in the model for each system were identified by a preliminary order of magnitude analysis and adjusted in the vapor-liquid equilibrium data correlation. Detailed discusions and values of physical constants, such as Henry s constants and chemical equilibrium constants, are given in Chen et al. (11). [Pg.66]

Bennett and Barter (1997) discuss the effect of partitioning-dissolution in an aqueous phase of alkylphenol. Specifically, they show that the depletion of this crude oil component affects the chemical composition of the original pollutant. Partitioning at equilibrium can be considered the maximum dissolution value of a compound under optimal solvation conditions. Partitioning-dissolution is obtained by washing the crude oil with saline water at variable temperature and pressure conditions, similar to those in the subsurface. The data reported were obtained using a partition device able to simulate the natural environmental conditions of a crude oil reservoir. The alkylphenol partition coefficients between crude oil and saline subsurface water were measured as a function of variation in pressure, temperature, and water salinity. Preliminary trials proved that the experimental device did not allow alkylphenol losses due to volatilization. [Pg.346]

The data for the ion exchange isotherms were obtained from batch experiments conducted in a constant temperature agitated system utilizing tightly sealed polypropylene bottles. Conventional chemical analyses were used to obtain the cation distribution data in both zeolite and exchange solution phases. Most of the exchanges were carried out at ambient temperature for 24-72 hours. Preliminary tests had shown that equilibrium was essentially reached within a few hours. [Pg.63]

The approaches for calculating equilibrium gas-phase composition in a two-phase system containing aqueous solution of HP. air, and JPF are also suggested. The further step in evaluating the performance of the dual-fuel, air-breathing PDE [13] is to incorporate chemical kinetics of HP decomposition and JPF oxidation. Preliminary results on simulation of JPF (or HP) liquid drop ignition and combustion in air with HP (or JPF) vapor have been reported [16]. [Pg.353]

Stability criteria are discussed within the framework of equilibrium thermodynamics. Preliminary information about state functions, Legendre transformations, natural variables for the appropriate thermodynamic potentials, Euler s integral theorem for homogeneous functions, the Gibbs-Duhem equation, and the method of Jacobians is required to make this chapter self-contained. Thermal, mechanical, and chemical stability constitute complete thermodynamic stability. Each type of stability is discussed empirically in terms of a unique thermodynamic state function. The rigorous approach to stability, which invokes energy minimization, confirms the empirical results and reveals that r - -1 conditions must be satisfied if an r-component mixture is homogeneous and does not separate into more than one phase. [Pg.785]


See other pages where Preliminary chemical/phase equilibrium is mentioned: [Pg.449]    [Pg.236]    [Pg.522]    [Pg.177]    [Pg.873]    [Pg.90]    [Pg.212]    [Pg.485]    [Pg.567]    [Pg.335]    [Pg.335]    [Pg.304]    [Pg.1444]    [Pg.259]    [Pg.327]    [Pg.6]   


SEARCH



Equilibrium, chemical phase

Phase chemical

Preliminary

Preliminary equilibrium

© 2024 chempedia.info