Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precipitation and heating

Porcelain crucibles are very frequently utilised for igniting precipitates and heating small quantities of solids because of their cheapness and their ability to withstand high temperatures without appreciable change. Some reactions, such as fusion with sodium carbonate or other alkaline substances, and also evaporations with hydrofluoric acid, cannot be carried out in porcelain crucibles owing to the resultant chemical attack. A slight attack of the porcelain also takes place with pyrosulphate fusions. [Pg.93]

Add 0.5 -1.0 ml of Soln. G to the precipitate and heat the mixture to 90 °C for 10 min. After cooling, the samples are centrifuged as described above and the supernatant is used for protein estimation by the Lowry protocol (Protocol 1.1.1.1) third supernatant. [Pg.15]

Derivation (1) Alkali or acid extraction from vanadium minerals. (2) By igniting ammonium metavanadate. (3) From concentrated ferrophosphorus slag by roasting with sodium chloride, leaching with water and purification by solvent extraction followed by precipitation and heating. [Pg.1311]

Another solution is prepared with divalent iron and urea. This solution is mixed with the previous precipitate and heated up to 90°C-96°C for 20 hours under refluxing conditions. The required pH condition is obtained through the slow decomposition of the urea when the temperature increases above 90°C, this condition will increase the pH uniformly favoring a more slower nudeation in the solution (Terrazas et al., 2010). [Pg.408]

Note ESP and HE stand respectively for electrostatic precipitator and heat exchanger. [Pg.437]

Molybdate-Based Catalysts. The first catalyst commercialized by SOHIO for the propylene ammoxidation process was bismuth phosphomolybdate, Bi9PMoi2052, supported on silica (9). The catalytically active and selective component of the catalyst is bismuth molybdate. In commercial fluid-bed operation, the bismuth molybdate catalyst is supported on silica to provide hardness and attrition resistance in the fluidizing environment. Bismuth molybdate catalysts can be prepared by a coprecipitation procedure using aqueous solutions of bismuth nitrate and ammonium molybdate (10). The catal3ret is produced by drying the precipitate and heat treating the dried particles to crystallize the bismuth molybdate phase. Heat treatment temperature for bismuth molybdate catalysts is generally arovmd 500°C. [Pg.247]

Hydrosphere The potential exists for water pollution from acid mine water, petroleum production by-product brines, acid precipitation, and heating of water used to cool power plants. [Pg.587]

SULPHANILAMIDE. (Reaction C.) Add 15 g. of the above thoroughly drained sulphonamide to 10 ml. of concentrated hydrochloric acid diluted with 20 ml. water, and boil the mixture gently under reflux for i hour. Then add 30 ml. of water and heat the mixture again to boiling, with the addition of a small quantity of animal charcoal. Filter the boiling solution, and add powdered sodium carbonate in small quantities to the filtrate with stirring until all eflFervescence ceases and the sulphanilamide is precipitated as a white powder. Cool the mixture thoroughly and filter oflF the sulphanilamide at the pump, wash with water and dry. Yield, ca. 10 g. [Pg.182]

Hydrolysis of />-Tolunitrile. As in the case of benzonitrile, alkaline h> drolysis is preferable to hydrolysis by 70% sulphuric acid. Boil a mixture of 5 g. of p-tolunitrile, 75 ml. of 10% aqueous sodium hydroxide solution and 15 ml. of ethanol under a reflux water-condenser. The ethanol is added partly to increase the speed of the hydrolysis, but in particular to prevent the nitrile (which volatilises in the steam) from actually crystallising in the condenser. The solution becomes clear after about i hour s heating, but the boiling should be continued for a total period of 1-5 hours to ensure complete hydrolysis. Then precipitate and isolate the p-toluic acid, CH3CgH4COOH, in precisely the same way as the benzoic acid in the above hydrolysis of benzonitrile. Yield 5 5 g. (almost theoretical). The p-toluic acid has m.p. 178°, and may be recrystallised from a mixture of equal volumes of water and rectified spirit. [Pg.195]

At the end of 30 minutes treat the mixture in A as follows Dissolve 8 ml. of glacial acetic acid in 10 ml. of water, add 4 ml. of phenylhydra-zine and mix well in order to obtain a clear solution. Add this to the solution in A and mix thoroughly a slightly cloudy solution may be obtained, but this will clear on heating. Place the mixture in a boiling water-bath and note the formation of j ellow crystals of glucosazone after about 15 minutes. At the end of about i hour, cool, filter off the precipitate and identify as directed on p. 139. [Pg.515]

The vanadium pentoxide catalyst Is prepared as follows Suspend 5 g. of pure ammonium vanadate in 50 ml. of water and add slowly 7 5 ml. of pure concentrated hydrochloric acid. Allow the reddish-brown, semi-colloidal precipitate to settle (preferably overnight), decant the supernatant solution, and wash the precipitate several times by decantation. Finally, suspend the precipitate in 76 ml. of water and allow it to stand for 3 days. This treatment renders the precipitate granular and easy to 6lter. Filter the precipitate with suction, wash it several times with cold 5 p>er cent, sodium chloride solution to remove hydrochloric acid. Dry the product at 120° for 12 hours, grind it in a mortar to a fine powder, and heat again at 120° for 12 hours. The yield of catalyst is about 3 - 5 g. [Pg.463]

Method 1. From ammonium chloroplatinate. Place 3 0 g. of ammonium chloroplatinate and 30 g. of A.R. sodium nitrate (1) in Pyrex beaker or porcelain casserole and heat gently at first until the rapid evolution of gas slackens, and then more strongly until a temperature of about 300° is reached. This operation occupies about 15 minutes, and there is no spattering. Maintain the fluid mass at 500-530° for 30 minutes, and allow the mixture to cool. Treat the sohd mass with 50 ml. of water. The brown precipitate of platinum oxide (PtOj.HjO) settles to the bottom. Wash it once or twice by decantation, filter througha hardened filter paper on a Gooch crucible, and wash on the filter until practically free from nitrates. Stop the washing process immediately the precipitate tends to become colloidal (2) traces of sodium nitrate do not affect the efficiency of the catalyst. Dry the oxide in a desiccator, and weigh out portions of the dried material as required. [Pg.470]

Sulphonamides. Mix together 1 0 g. of the dry acid or 1 - 2 g. of the anhydrous salt with 2 5 g. of phosphorus pentachloride f and heat under a reflux condenser in an oil bath at 150° for 30 minutes. Cool the mixture, add 20 ml. of dry benzene, warm on a steam bath and stir the solid mass well to extract the sulphonyl chloride filter. Add the benzene solution slowly and with stirring to 10 ml. of concentrated ammonia solution. If the sulphonamide precipitates, separate it by filtration if no solid is obtained, evaporate the benzene on a steam bath. Wash the sulphonamide with a little cold water, and recrystallise from water, aqueous ethanol or ethanol to constant m.p. [Pg.553]

Place 45 g. (43 ml.) of benzal chloride (Section IV,22), 250 ml. of water and 75 g. of precipitated calcium carbonate (1) in a 500 ml. round-bottomed flask fltted with a reflux condenser, and heat the mixture for 4 hours in an oil bath maintained at 130°. It is advantageous to pass a current of carbon dioxide through the apparatus. Filter off the calcium salts, and distil the filtrate in steam (Fig. II, 40, 1) until no more oil passes over (2). Separate the benzaldehyde from the steam distillate by two extractions with small volumes of ether, distil off most of the ether on a water bath, and transfer the residual benzaldehyde to a wide-mouthed bottle or flask. Add excess of a concentrated solution of sodium bisulphite in portions with stirring or shaking stopper the vessel and shake vigorously until the odour of benzaldehyde can no longer be detected. Filter the paste of the benzaldehyde bisulphite compound at the pump... [Pg.693]

Methyl crotonate. Purify commercial crotonic acid by distiUing 100 g. from a 100 ml. Claisen flask attached to an air condenser use an air bath (Fig. II, 5, 3). The pure acid passes over at 180-182° and crystallises out on cooling, m.p. 72-73° the recovery is about 90 per cent. Place 75 g. of absolute methyl alcohol, 5 g. (2 -7 ml.) of concentrated sulphuric acid and 50 g. of pure crotonic acid in a 500 ml. round-bottomed flask and heat under reflux for 12 hours. Add water, separate the precipitated ester and dissolve it in ether wash with dilute sodium carbonate solution until effervescence ceases, dry with anhydrous magnesium sulphate, and remove the ether on a water bath. Distil and collect the methyl crotoiiato at 118-120° the yield is 40 g. [Pg.927]

Hydrolyse the 5 g. of 3-indoleacetamide by heating it under reflux for 4 hours with a solution of 6 g. of sodium hydroxide in 40 ml. of water. Cool to 5°, treat with decolourising carbon (if necessary), filter, render strongly acid with concentrated hydrochloric acid (pH about 1 5). Collect the acid which precipitates and dry it at 70° the crude acid weighs 4 5 g. Purify as above. [Pg.1013]

Ethyl 2-nitro-3-(5-benzyloxyindoT3-yl)propanoate (3.7 g, 0.01 mol) was dissolved in abs. ethanol (50 ml) and hydrogenated over PtO catalyst (EOg) until H2 uptake ceased (about 1.75 h). The solution was purged with nitrogen and 20% aq. NaOH solution (4.0 g) w as added. A hydrogen atmosphere was re-established and the hydrolysis was allowed to proceed overnight. The solution was diluted with water (20 ml) and filtered. The pH of the filtrate was adjusted to 6 with HOAc and heated to provide a solid precipitate. The mixture was cooled and filtered to provide 5-benzyloxytryptophan (2.64 g). [Pg.133]


See other pages where Precipitation and heating is mentioned: [Pg.75]    [Pg.354]    [Pg.706]    [Pg.111]    [Pg.52]    [Pg.96]    [Pg.75]    [Pg.354]    [Pg.706]    [Pg.111]    [Pg.52]    [Pg.96]    [Pg.408]    [Pg.454]    [Pg.299]    [Pg.305]    [Pg.321]    [Pg.344]    [Pg.350]    [Pg.454]    [Pg.487]    [Pg.550]    [Pg.551]    [Pg.586]    [Pg.637]    [Pg.668]    [Pg.672]    [Pg.767]    [Pg.776]    [Pg.830]    [Pg.956]    [Pg.995]    [Pg.133]    [Pg.43]    [Pg.153]    [Pg.240]    [Pg.245]    [Pg.258]    [Pg.267]   
See also in sourсe #XX -- [ Pg.519 ]




SEARCH



Heat precipitation

© 2024 chempedia.info