Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Powders barium titanates

The effect of k on d is most clearly demonstrated in the experiment by Fukada and Date (1970) on the polyester resin film, filled with powdered barium titanate and polarized under a d.c. field. The strong piezoelectricity, as shown in Fig. 29, is ascribed to the polarization charge of the ceramic filler and heterogeneous strain due to the composite structure. The real part d exhibits a maximum at 90° C and d" has a peak and a succeeding dip at this temperature where the primary relaxation of polyester resin occurs. The behavior of d and d" is quite similar to that of k and k" in Fig. 16, respectively, in which decreasing X = an corresponds to increasing temperature. [Pg.48]

K. Osseo-Asare, F. J. Arriagada, and J. H. Adair, "Solubility Relationships in the Coprecipitation Synthesis of Barium Titanate Heterogeneous Equihbria in the Ba—Ti—C2O4—H2O System," in G. L. Messing, E. R. Fuller, Jr., and Hans Hausin, eds.. Ceramic Powder Science Vol. 2,1987, pp. 47-53. [Pg.315]

The most significant commercial product is barium titanate, BaTiO, used to produce the ceramic capacitors found in almost all electronic products. As electronic circuitry has been rniniaturized, demand has increased for capacitors that can store a high amount of charge in a relatively small volume. This demand led to the development of highly efficient multilayer ceramic capacitors. In these devices, several layers of ceramic, from 25—50 ]lni in thickness, are separated by even thinner layers of electrode metal. Each layer must be dense, free of pin-holes and flaws, and ideally consist of several uniform grains of fired ceramic. Manufacturers are trying to reduce the layer thickness to 10—12 ]lni. Conventionally prepared ceramic powders cannot meet the rigorous demands of these appHcations, therefore an emphasis has been placed on production of advanced powders by hydrothermal synthesis and other methods. [Pg.500]

Table 2. Commercial Hydrothermal Barium Titanate Powders ... Table 2. Commercial Hydrothermal Barium Titanate Powders ...
Barium titanate thin films can be deposited on various substances by treating with an aqueous solution containing barium salts and an alkanolamine-modifted titanate such as TYZOR TE (151). In a similar fashion, reaction of a tetraalkyl titanate with an alkah metal hydroxide, such as potassium hydroxide, gives oxyalkoxide derivatives (KTi O(OR) ), which can be further processed to give alkali metal titanate powders, films, and fibers (152—155). The fibers can be used as adsorbents for radioactive metals such as cesium, strontium, and uranium (156). [Pg.151]

Barium carbonate also reacts with titania to form barium titanate [12047-27-7] BaTiO, a ferroelectric material with a very high dielectric constant (see Ferroelectrics). Barium titanate is best manufactured as a single-phase composition by a soHd-state sintering technique. The asymmetrical perovskite stmcture of the titanate develops a potential difference when compressed in specific crystallographic directions, and vice versa. This material is most widely used for its strong piezoelectric characteristics in transducers for ultrasonic technical appHcations such as the emulsification of Hquids, mixing of powders and paints, and homogenization of milk, or in sonar devices (see Piezoelectrics Ultrasonics). [Pg.480]

Structural binder A wide range of applications in electronics makes use of the plastics as a structural binder to hold active materials. For example, a plastic such as polyvinylidene fluoride is filled with an electroluminescent phosphor to form the dielectric element in electroluminescent lamps. Plastics are loaded with barium titanate and other high dielectric powders to make slugs for high K capacitors. The cores in high frequency transformers are made using iron and iron oxide powders bonded with a plastic and molded to form the magnetic core. [Pg.228]

Fine chemicals These are produced in small volumes and purchased on the basis of chemical composition, purity and price. Examples are chloropropylene oxide (used for the manufacture of epoxy resins, ion-exchange resins and other products), dimethyl formamide (used, for example, as a solvent, reaction medium and intermediate in the manufacture of pharmaceuticals), n-butyric acid (used in beverages, flavorings, fragrances and other products) and barium titanate powder (used for the manufacture of electronic capacitors). [Pg.1]

Barium titanate is made by sintering a finely powdered mixture of barium carbonate and titanium dioxide in a furnace at 1,350°C. The calcined mass is finely ground and mixed with a binder (plastic). The mixture is subjected to extrusion, pressing or film casting to obtain ceramic bodies of desired shapes. Plastic is burnt off by heating and the shaped body is sintered by firing and then pobshed. [Pg.95]

The bending piezoelectricity in drawn and polarized polymer films was studied in detail by Kawai (1) (1970). Kitayama and Nakayama (1971) reported a very high piezoelectricity in composite films of polymer (PVDF, nylon 11, PVC) and powdered ceramics (barium titanate, PZT) after poling. In the case of PVDF and nylon, the piezoelectric constant increase by a factor of 102 when the ceramics make up 50% of the volume. The pyroelectricity and optical nonlinearity of polarized PVDF films have been studied by Bergmann, McFee, and Crane (1971). [Pg.47]

Barium titanate and BaTi03-based materials are most commonly used for ceramic capacitors with high dielectric permittivity. BaTi03 powder of extremely high quality (in respect of its purity, stoichiometry, particles morphology) is required for most of the modem applications. This characteristic may be considerably improved by the application of alkoxide precursors. Thus, it is of no surprise that synthesis of BaTi03 and BaTi03-based materials from metal alkoxides attracted considerable attention for several decades. The first works on... [Pg.129]

New battery developments include the ultracapacitor hybrid barium titan-ate powder design (EEStors). These devices can absorb and release charges much faster than electrochemical batteries. They weigh less, and some projections suggest that in electric cars they might provide 500 mi of travel at a cost of 9 in electricity. But these are only the projections of researchers. [Pg.49]

Very good mixing on an atomic scale can be achieved by chemical methods [5], and in the context of electroceramics the production of high purity, sub-micron barium titanate-based powders for the manufacture of multilayer capacitors (see Section 5.4.3) is of paramount importance. Tight control over powder chemistry has a direct and significant influence over capacitor failure rates. Also, the strong... [Pg.99]

There are four principal routes to producing barium titanate powders. [Pg.100]

Multilayer capacitors A critical step in the manufacture of multilayer capacitors is, of course, the barium titanate-based starting powders, and the various routes for producing these are described in Section 3.4. The multilayer capacitor structure (Fig. 5.11) enables the maximum capacitance available from a thin dielectric to be packed into the minimum space in a mechanically robust form. [Pg.263]

John Wang, Jiye Fang et al., Ultrafme barium titanate powders via microemulsion proessing routes. J. Am. Ceramic Soc. 82(1999) pp.873-881. [Pg.217]

Blanco-Lopez, M.C., Rand, B., and Riley, RL., J. Ear. Ceram. Soc., 17, 281,1997. Lu, S., Lee, B.I., and Wang, Z., Synthesis of redispersible nano-sized barium titanate powders by hydrothermal method, in Ceramic Transactions, vol. 106, Dielectric Materials Devices, edited by K.M. Narr and A.R. Bhalla, American Ceramic Society, Westerville, OH, 2000. [Pg.681]

Barium titanate is made from pure BaC03 and Ti02. The compound is first synthesized by heating the powdered mixture at 1100-1300 C. The mix usually contains small amounts of additives altering the ferroelectric behaviour (sec p. 326). [Pg.163]


See other pages where Powders barium titanates is mentioned: [Pg.2765]    [Pg.207]    [Pg.499]    [Pg.500]    [Pg.500]    [Pg.307]    [Pg.346]    [Pg.1029]    [Pg.86]    [Pg.37]    [Pg.14]    [Pg.3]    [Pg.11]    [Pg.188]    [Pg.455]    [Pg.14]    [Pg.85]    [Pg.16]    [Pg.662]    [Pg.663]    [Pg.680]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Barium titanate

Barium, powder

Titan

Titanate

Titanate powders

Titanates

Titanates barium

Titanation

Titane

Titanic powders

© 2024 chempedia.info