Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Position postulate

It will be evident that these methods can only be used after approximately correct atomic positions have been postulated. If the positions postulated are not approximately correct, the calculated intensities are nothing like those observed, and ibis not possible to decide what movements are necessary to put matters right. Everything therefore depends on whether the preliminary reasoning leads to an approximately correct structure. This is the great limitation of the method of trial. [Pg.291]

Before the performance of the loading we have to apply 5 up to 12 sensors, according their size, on the cylindrical part of the drums and after a short check of the required sensitivity and the wave propagation the pneumatic pressure test monitored by AE can be performed. The selection of the sensors and their positions was performed earlier in pre-tests under the postulate, that the complete cylinder can be tested with the same sensitivity, reliability and that furthermore the localisation accuracy of defects in the on-line- and the post analysis is sufficient for the required purpose. For the flat eovers, which will be tested by specific sensors, the geometrical shape is so complicated, that we perform in this case only a defect determination with a kind of zone-location. [Pg.32]

To extract infomiation from the wavefimction about properties other than the probability density, additional postulates are needed. All of these rely upon the mathematical concepts of operators, eigenvalues and eigenfiinctions. An extensive discussion of these important elements of the fomialism of quantum mechanics is precluded by space limitations. For fiirther details, the reader is referred to the reading list supplied at the end of this chapter. In quantum mechanics, the classical notions of position, momentum, energy etc are replaced by mathematical operators that act upon the wavefunction to provide infomiation about the system. The third postulate relates to certain properties of these operators ... [Pg.7]

Piperazinothiazoies (2) were obtained by such a replacement reaction, Cu powder being used as catalyst (25. 26). 2-Piperidinothiazoles are obtained in a similar way (Scheme 2) (27). This catalytic reaction has been postulated in the case of benzene derivatives as a nucleophilic substitution on the copper-complexed halide in which the halogen possesses a positive character by coordination (29). For heterocyclic compounds the coordination probably occurs on the ring nitrogen. [Pg.12]

At first, the dimeric nature of the base isolated from 3-ethyl-2-methyl-4-phenylthiazolium was postulated via a chemical route. Indeed the adduct of ICH, on a similar 2-ethylidene base is a 2-isopropylthiazolium salt in the case of methylene base it is an anilinovinyl compound identified by its absorption spectrum and chemical reactivity (45-47). This dimeric structure of the molecule has been definitively established by its NMR spectrum. It is very similar to the base issued from 2.3-dimethyl-benzo thiazolium (48). It corresponds to 2-(3 -ethyl-4 -phenyl-2 -methylenethiazolinilydene)2-methyl-3-ethyl-4-phenylthiazoline (13). There is only one methyl signal (62 = 2.59), and two series of signals (63= 1.36-3.90, 63= 1.12-3.78) correspond to ethyl groups. Three protons attributed to positions T,5,5 are shifted to a lower field 5.93, 6.58, and 8.36 ppm. The bulk of the ten phenyl protons is at 7.3 ppm (Scheme 22). [Pg.39]

Whereas zirconium was discovered in 1789 and titanium in 1790, it was not until 1923 that hafnium was positively identified. The Bohr atomic theory was the basis for postulating that element 72 should be tetravalent rather than a trivalent member of the rare-earth series. Moseley s technique of identification was used by means of the x-ray spectra of several 2ircon concentrates and lines at the positions and with the relative intensities postulated by Bohr were found (1). Hafnium was named after Hafma, the Latin name for Copenhagen where the discovery was made. [Pg.439]

NH2)50s(2,3-T -L)], where L = furan, pyrrole, and thiophene. Although neither the furan nor thiophene complexes react with maleic anhydride over a period of 10 days, the pyrrole complex (15) reacts rapidly at room temperature and 101.3 kPa to form a mixture of endo (17) and exo (16) complexes. An a2omethine ylide intermediate was postulated as the key intermediate through which maleic anhydride added to the 2- and 5-positions of the coordinated pyrrole ring. [Pg.450]

Commercial grades of socbum aluminate contain both waters of hycbation and excess socbum hycboxide. In solution, a high pH retards the reversion of socbum aluminate to insoluble aluminum hycboxide. The chemical identity of the soluble species in socbum aluminate solutions has been the focus of much work (1). Solutions of sodium aluminate appear to be totaby ionic. The aluminate ion is monovalent and the predominant species present is deterrnined by the Na20 concentration. The tetrahydroxyaluminate ion [14485-39-3], Al(OH) 4, exists in lower concentrations of caustic dehydration of Al(OH) 4, to the aluminate ion [20653-98-9], A10 2) is postulated at concentrations of Na20 above 25%. The formation of polymeric aluminate ions similar to the positively charged polymeric ions formed by hydrolysis of aluminum at low pH does not seem to occur. Al(OH) 4 has been identified as the predominant ion in dilute aluminate solutions (2). [Pg.139]

NitrofuraZone. 2-[5-Nitro-2-furanyl)methylene]hydrazinecarboximide, the first nitrofiiran to be employed clinically, is prepared from 5-nitro-2-furancarboxaldehyde and semicarbazide (19). This product has seen clinical use topically as an antibacterial, for systemic appHcation for bacterial infections in poultry and swine, and also has been employed as a food additive. In rats, nitrofurazone is hydroxylated at the 4 position of the furan moiety (27). The involvement of nitrenium ions has also been postulated in the mechanism of action of nitrofurazone (38). [Pg.461]

The photopolymerization process taking place within a representative mixture of sensitizer, initiator, chain-transfer agent, and monomer, typical of positive Cromalin, has been studied in detail (41,42). The exact mechanism is still controversial, but a generalized reaction scheme can be postulated as follows, where L2 = biimidazole dimer, S = sensitizer, RH = chain-transfer agent, L2 = excited biimidazole dimer, L = biimidazole radical,... [Pg.41]

Amines or ammonia replace activated halogens on the ting, but competing pyridyne [7129-66-0] (46) formation is observed for attack at 3- and 4-halo substituents, eg, in 3-bromopyridine [626-55-1] (39). The most acidic hydrogen in 3-halopyridines (except 3-fluoropyridine) has been shown to be the one in the 4-position. Hence, the 3,4-pyridyne is usually postulated to be an intermediate instead of a 2,3-pyridyne. Product distribution (40% (33) and 20% (34)) tends to support the 3,4-pyridyne also. [Pg.329]

Perhaps the most convincing evidence for nucleophilic attack at an unexpected ring position comes from the direct observation of intermediate Meisenheimer complexes in the NMR spectrum. When 2-chloro-3,6-diphenylpyrazine is treated with KNH2 in liquid ammonia, the intermediate (29) was observed directly (Scheme 8). It was postulated that this initially formed complex rearranges to (30) which gives the observed product by elimination of a chloride ion (73RTC708). [Pg.165]

Schematic DRD shown in Fig. 13-59 are particularly useful in determining the imphcations of possibly unknown ternary saddle azeotropes by postulating position 7 at interior positions in the temperature profile. It should also be noted that some combinations of binary azeotropes require the existence of a ternaiy saddle azeotrope. As an example, consider the system acetone (56.4°C), chloroform (61.2°C), and methanol (64.7°C). Methanol forms minimum-boiling azeotropes with both acetone (54.6°C) and chloroform (53.5°C), and acetone-chloroform forms a maximum-boiling azeotrope (64.5°C). Experimentally there are no data for maximum or minimum-boiling ternaiy azeotropes. The temperature profile for this system is 461325, which from Table 13-16 is consistent with DRD 040 and DRD 042. However, Table 13-16 also indicates that the pure component and binary azeotrope data are consistent with three temperature profiles involving a ternaiy saddle azeotrope, namely 4671325, 4617325, and 4613725. All three of these temperature profiles correspond to DRD 107. Experimental residue cui ve trajectories for the acetone-... Schematic DRD shown in Fig. 13-59 are particularly useful in determining the imphcations of possibly unknown ternary saddle azeotropes by postulating position 7 at interior positions in the temperature profile. It should also be noted that some combinations of binary azeotropes require the existence of a ternaiy saddle azeotrope. As an example, consider the system acetone (56.4°C), chloroform (61.2°C), and methanol (64.7°C). Methanol forms minimum-boiling azeotropes with both acetone (54.6°C) and chloroform (53.5°C), and acetone-chloroform forms a maximum-boiling azeotrope (64.5°C). Experimentally there are no data for maximum or minimum-boiling ternaiy azeotropes. The temperature profile for this system is 461325, which from Table 13-16 is consistent with DRD 040 and DRD 042. However, Table 13-16 also indicates that the pure component and binary azeotrope data are consistent with three temperature profiles involving a ternaiy saddle azeotrope, namely 4671325, 4617325, and 4613725. All three of these temperature profiles correspond to DRD 107. Experimental residue cui ve trajectories for the acetone-...
Mdissociates as a positive ion. Conversely, the enhanced ion yields of the cesium ion beam can be explained using a work function model, which postulates that because the work function of a cesiated surface is drastically reduced, there are more secondary electrons excited over the surface potential barrier to result in enhanced formation of negative ions. The use of an argon primary beam does not enhance the ion yields of either positive or negative ions, and is therefore, much less frequently used in SIMS analyses. [Pg.537]

Important differences are seen when the reactions of the other halogens are compared to bromination. In the case of chlorination, although the same chain mechanism is operative as for bromination, there is a key difference in the greatly diminished selectivity of the chlorination. For example, the pri sec selectivity in 2,3-dimethylbutane for chlorination is 1 3.6 in typical solvents. Because of the greater reactivity of the chlorine atom, abstractions of primary, secondary, and tertiary hydrogens are all exothermic. As a result of this exothermicity, the stability of the product radical has less influence on the activation energy. In terms of Hammond s postulate (Section 4.4.2), the transition state would be expected to be more reactant-like. As an example of the low selectivity, ethylbenzene is chlorinated at both the methyl and the methylene positions, despite the much greater stability of the benzyl radical ... [Pg.703]

The plant internal PSA can be used to identify critical equipment that could be damaged by fire. This form of screening was employed in the fire-risk portions of ZIP. At each location considered, the loss of all the equipment in the zone is postulated regardless of the size or position of the fire in the zone. If this does not show the occurrence of an initiating event (LOCA or transient) or if the safety functions are not damage to required for safe shutdown, the location is eliminated from consideration. If the location is found to be critical, it is considered furilier lot-detailed fire growth and fire suppression analyses. [Pg.197]

An ipso attack on the fluorine carbon position of 4-fIuorophenol at -40 °C affords 4-fluoro-4-nitrocyclohexa-2 5-dienone in addtion to 2-nitrophenol The cyclodienone slowly isomenzes to the 2-nitrophenol Although ipso nitration on 4-fluorophenyl acetate furnishes the same cyclodienone the major by-product is 4 fluoro-2,6-dinitrophenol [25] Under similar conditions, 4-fluoroanisole pnmar ily yields the 2-nitro isomer and 6% of the cyclodienone The isolated 2 nitro isomer IS postulated to form by attack of the nitromum ion ipso to the fluorine with concomitant capture of the incipient carbocation by acetic acid Loss of the elements of methyl acetate follows The nitrodienone, being the keto tautomer of the nitrophenol, aromatizes to the isolated product [26] (equation 20) Intramolecular capture of the intermediate carbocation occurs in nitration of 2-(4-fluorophenoxy)-2-methyIpropanoic acid at low temperature to give the spiro products 3 3-di-methyl-8 fluoro 8 nitro-1,4 dioxaspiro[4 5]deca 6,9 dien 2 one and the 10-nitro isomer [2d] (equation 21)... [Pg.393]

According to this very simple derivation and result, the position of the transition state along the reaction coordinate is determined solely by AG° (a thermodynamic quantity) and AG (a kinetic quantity). Of course, the potential energy profile of Fig. 5-15, upon which Eq. (5-60) is based, is very unrealistic, but, quite remarkably, it is found that the precise nature of the profile is not important to the result provided certain criteria are met, and Miller " obtained Eq. (5-60) using an arc length minimization criterion. Murdoch has analyzed Eq. (5-60) in detail. Equation (5-60) can be considered a quantitative formulation of the Hammond postulate. The transition state in Fig. 5-9 was located with the aid of Eq. (5-60). [Pg.224]

The reactions of pyrrolidinocyelohexenes with acid have also been Considered from a stereochemical point of view. Deuteration of the 2-methylcyclohexanone enamine gave di-2-deuterio-6-methylcyclohexanone under conditions where ds-4-/-butyI-6-methyIpyrrolidinocycIohexene was not deuterated (2J4). This experiment supported the postulate of Williamson (2JS), which called for the axial attack of an electrophile and axial orientation of the 6 substituent on an aminocyclohexene in the transition state of such enamine reactions. These geometric requirements explain the more difficult alkylation of a cyclohexanone enamine on carbon 2, when it is substituted at the 6 position, as compared with the unsubstituted case. [Pg.345]


See other pages where Position postulate is mentioned: [Pg.99]    [Pg.143]    [Pg.57]    [Pg.99]    [Pg.143]    [Pg.57]    [Pg.79]    [Pg.10]    [Pg.2]    [Pg.16]    [Pg.20]    [Pg.21]    [Pg.389]    [Pg.2424]    [Pg.95]    [Pg.131]    [Pg.237]    [Pg.514]    [Pg.229]    [Pg.465]    [Pg.512]    [Pg.113]    [Pg.58]    [Pg.124]    [Pg.219]    [Pg.59]    [Pg.535]    [Pg.50]    [Pg.255]    [Pg.564]    [Pg.240]    [Pg.257]    [Pg.98]    [Pg.221]    [Pg.560]   


SEARCH



© 2024 chempedia.info