Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porphyrin pathway

Porphyrin pathway This pathway creates very important molecules called porphyrins that are in turn used to make another molecule, called a heme, which can bind oxygen. Hemes are needed by oxygen-binding proteins like hemoglobin and myoglobin that transport or store oxygen. [Pg.61]

More specifically, compounds like podolactone A (Fig. 10.1) inhibit proton efflux from plant cells induced by fusicoccin, without affecting ATP levels.42 The related compound, podolactone E is a strong inhibitor of 6-aminolevulinic acid and chlorophyll synthesis.34 The authors concluded that this was caused by suppression of synthesis of proteins needed in the porphyrin pathway because podolactones also inhibited gibberellic acid-induced a-amylase synthesis in barley embryos. The molecular target site(s) of this class of terpenoid phytotoxins remains to be determined. [Pg.223]

Finally, the spontaneous liberation of free radicals via the unimolecular decay of CIII is feasible, since the peroxyl radical is not covalently bound to the porphyrin (pathway 2). This assumption is supported by experimental evidence, which demonstrates that in the presence of excess H202 and no reductant, CIII decays irreversibly into GS and superoxide species in lignin peroxidase [46], horseradish peroxidase [104], myeloperoxidase [51, 105, 106]. [Pg.297]

The catabolism of haemoglobin yields haem, which is subsequently converted to bilirubin in a two-step process that takes place in the hepatocyte. First, the microsomal enzyme haem oxygenase cleaves the porphyrin ring of haem, generating biliverdin in an energy-utilising reaction. Following this, biliverdin is converted to bilirubin by the cytosolic enzyme biliverdin reductase. As the liver is the active site for biosynthesis of porphyrin and haem, deficiencies in some enzymes of the porphyrin pathway may lead to insufficient haem production and an increase in porphyrin levels, which causes acute porphyria attacks. [Pg.41]

Two approaches to stimulation of porphyrin accumulation in plants have been taken. The first is to supply the plant with the porphyrin precursor 5-aminolevulinc acid (ALA) along with compounds that affect the porphyrin pathway. The second is to block porphyrin synthesis at the protoporphyrinogen oxidase step in the pathway, thereby deregulating the pathway and causing accumulation primarily of PPIX. [Pg.372]

Figure 6. Hypothetical model of the phytotoxic mechanism of action for herbicides that inhibit Protox. Protoporphyrinogen which accumulated as a result of Protox inhibition leaves the membrane-bound, channeled porphyrin pathway and is autooxidized to PPIX. Redrawn from (W). Figure 6. Hypothetical model of the phytotoxic mechanism of action for herbicides that inhibit Protox. Protoporphyrinogen which accumulated as a result of Protox inhibition leaves the membrane-bound, channeled porphyrin pathway and is autooxidized to PPIX. Redrawn from (W).
It is conceivable that related ligands, e.g. dehydrocorrins, could be obtained from pyrrolic units using pathways similar to those used for porphyrins and could be hydrogenated to corrins. This has indeed been achieved (I.D. Dicker, 1971), but it is, of course, impossible to introduce the nine chiral centres of cobyrinic acid by such procedures. [Pg.259]

Porphyrin, 5,10,15,20-tetraphenyl-, 4, 386 Porphyrin, vinyl-synthesis, 4, 278, 279 Porphyrin coenzymes in biochemical pathways, 1, 258-260 Porphyrinogen, mcso-tetraaryl-synthesis, 4, 230 Porphyrinogens, 4, 378, 394 pyrazoles, 5, 228 synthesis, 4, 231 Porphyrins, 4, 377-442 acetylation, 4, 395 aromatic ring current, 4, 385 basicity, 4, 400 biosynthesis, reviews, 1, 99... [Pg.748]

The 7/NMR spectrum displays signals of shielded protons = - 2.35, integral level 1) and of deshielded ones = 10.45 and 9.39, integral levels 1 1). This reflects a ring current due to aromaticity as described for annulenes and porphyrins in section 2.5.2. To conclude, the reaction involves an oxidative cyclisatlon of 2,5-bis(2-pyrrolylmethyl)-17/-pyrrole 2 with 47/-trlazole-3,5-dlaldehyde 3 to the corresponding 2,3-diazaporphyrin 4, following the 3-t-l pathway of porphyrin synthesis. Two non-equivalent tautomers may exist these are the diaza[ 18]annulene 4a and the tetraaza[18]annulene 4b. [Pg.213]

In the third complex of the electron transport chain, reduced coenzyme Q (UQHg) passes its electrons to cytochrome c via a unique redox pathway known as the Q cycle. UQ cytochrome c reductase (UQ-cyt c reductase), as this complex is known, involves three different cytochromes and an Fe-S protein. In the cytochromes of these and similar complexes, the iron atom at the center of the porphyrin ring cycles between the reduced Fe (ferrous) and oxidized Fe (ferric) states. [Pg.685]

Porphyrin systems therefore obey Hiickel s rule in having An + 2 n = A) TT-electrons in a planar, cyclic, conjugated array. Both major tautomeric forms have delocalization pathways with opposite N-Hs (trails tautomers), as shown in 71a 71b. It is already known (76AHCS1) that tautomers with inner hydrogens adjacent (cis tautomers) are much less stable, playing an important role only in the mechanism of proton transfer in porphyrins and phthalocyanines. [Pg.16]

Knowledge of the biochemistry of the porphyrins and of heme is basic to understanding the varied functions of hemoproteins (see below) in the body. The porphyrias are a group of diseases caused by abnormalities in the pathway of biosynthesis of the various porphyrins. Although porphyrias are not very prevalent, physicians must be aware of them. A much more prevalent clinical condition is jaundice, due to elevation of bilirubin in the plasma. This elevation is due to overproduction of bilirubin or to failure of its excretion and is seen in numerous diseases ranging from hemolytic anemias to viral hepatitis and to cancer of the pancreas. [Pg.270]

A summary of the steps in the biosynthesis of the porphyrin derivatives from PBG is given in Figure 32-8. The last three enzymes in the pathway and ALA synthase are located in the mitochondrion, whereas the other enzymes are cytosolic. Both erythroid and non-erythroid ( housekeeping ) forms of the first four enzymes are found. Heme biosynthesis occurs in most mammalian cells with the exception of mature erythrocytes, which do not contain mitochondria. However,... [Pg.271]

The scope and limitations for transfer hydrogenation employing either the iron porphyrin system or the combination of iron compound/terpy/PPhs are listed in Table 8. In most cases, the FeCVterpy/PPhs system displays a higher activity. Except for chloromethyl- and cyclopropyl-acetophenone, the desired products were obtained in good to excellent yields. It should be noted that a ring opened product was not observed when cyclopropyl acetophenone was employed. Hence, a radical-type reduction pathway was excluded and a hydride mechanism appeared to be reasonable. [Pg.41]

Up to this point, the biosynthesis steps are identical for both chlorophyll and haem, bnt depending on which metal is inserted in the center of the porphyrin, the pathway branches to form one or another. The insertion of iron is followed by... [Pg.34]

There are large numbers of naturally occurring representatives, especially of pyrrole that include the important polypyrroles (porphyrins and corrins), and the nitropyrrole antibiotics such as pyr-rolomycins and pyrroxamycin. Derivatives of furan have been used as fungicides and A-vinylpyr-rolidone is an important monomer for the production of blood plasma extenders and for cosmetic applications. On account of the similarity in the pathways for the aerobic degradation of monocyclic furan, thiophene, and pyrrole, all of them are considered here. Anaerobic degradation of furans is discussed in Part 2 of this chapter. [Pg.523]

HeyerNJ, Bittner Jr AC, Echeverria D, Woods JS. 2006. A cascade analysis of the interaction of mercury and coproporphyrinogen oxidase (CPOX) polymorphism on the heme biosynthetic pathway and porphyrin production. Toxicol Lett 161 159-166. [Pg.177]

Shi C, Anson EC. 1990. Catalytic pathways for the electroreduction of oxygen by iron tetra-kis(4-iV-methylpyridyl)porphyrin or iron tetraphenylporphyrin adsorbed on edge plane pyrol3dic graphite electrodes. Inorg Chem 29 4298. [Pg.692]

Interpreting these results on a detailed molecular basis is difficult because we have at present no direct structural data proving the nature of the split Co(IIl/lI) voltammetry (which seems critical to the electrocatalytic efficacy). Experiments on the dissolved monomeric porphyrin, in CH-C solvent, reveal a strong tendency for association, especially for the tetra(o-aminophenyl)porphyrin. From this observation, we have speculated (3) that the split Co(III/II) wave may represent reactivity of non-associated (dimer ) and associated forms of the cobalt tetra(o-aminophenyl)porphyrins, and that these states play different roles in the dioxygen reduction chemistry. That dimeric cobalt porphyrins in particular can yield more efficient four electron dioxygen reduction pathways is well known (24). Our results suggest that efforts to incorporate more structurally well defined dimeric porphyrins into polymer films may be a worthwhile line of future research. [Pg.418]

Figure 7.1 The overall pathway of haem biosynthesis. 5-AminolaevuIinate (ALA) is synthesized in the mitochondrion, and is transferred to the cytosol where it is converted to porphobilinogen, four molecules of which condense to form a porphyrin ring. The next three steps involve oxidation of the pyrrole ring substituents to give protoporphyrinogen fX, whose formation is accompanied by its transport back into the mitochondrion. After oxidation to protoporphyrin IX, ferrochelatase inserts Fe2+ to yield haem. A, P, M and V represent, respectively acetyl, propionyl, methyl and vinyl (—CH2=CH2) groups. From Voet and Voet, 1995. Reproduced by permission of John Wiley Sons, Inc. Figure 7.1 The overall pathway of haem biosynthesis. 5-AminolaevuIinate (ALA) is synthesized in the mitochondrion, and is transferred to the cytosol where it is converted to porphobilinogen, four molecules of which condense to form a porphyrin ring. The next three steps involve oxidation of the pyrrole ring substituents to give protoporphyrinogen fX, whose formation is accompanied by its transport back into the mitochondrion. After oxidation to protoporphyrin IX, ferrochelatase inserts Fe2+ to yield haem. A, P, M and V represent, respectively acetyl, propionyl, methyl and vinyl (—CH2=CH2) groups. From Voet and Voet, 1995. Reproduced by permission of John Wiley Sons, Inc.

See other pages where Porphyrin pathway is mentioned: [Pg.267]    [Pg.27]    [Pg.384]    [Pg.2758]    [Pg.203]    [Pg.338]    [Pg.267]    [Pg.27]    [Pg.384]    [Pg.2758]    [Pg.203]    [Pg.338]    [Pg.662]    [Pg.25]    [Pg.601]    [Pg.353]    [Pg.601]    [Pg.258]    [Pg.270]    [Pg.284]    [Pg.83]    [Pg.439]    [Pg.647]    [Pg.659]    [Pg.660]    [Pg.661]    [Pg.683]    [Pg.325]    [Pg.326]    [Pg.418]    [Pg.131]    [Pg.319]    [Pg.301]    [Pg.316]    [Pg.209]    [Pg.212]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Porphyrin synthesis pathway

© 2024 chempedia.info