Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pore silicon

PDMS based siloxane polymers wet and spread easily on most surfaces as their surface tensions are less than the critical surface tensions of most substrates. This thermodynamically driven property ensures that surface irregularities and pores are filled with adhesive, giving an interfacial phase that is continuous and without voids. The gas permeability of the silicone will allow any gases trapped at the interface to be displaced. Thus, maximum van der Waals and London dispersion intermolecular interactions are obtained at the silicone-substrate interface. It must be noted that suitable liquids reaching the adhesive-substrate interface would immediately interfere with these intermolecular interactions and displace the adhesive from the surface. For example, a study that involved curing a one-part alkoxy terminated silicone adhesive against a wafer of alumina, has shown that water will theoretically displace the cured silicone from the surface of the wafer if physisorption was the sole interaction between the surfaces [38]. Moreover, all these low energy bonds would be thermally sensitive and reversible. [Pg.689]

Metal Oxide - Since metals are less electrophilic than silicon, metal oxide adsorbents show even stronger selectivity for polar molecules than do siliceous materials. The most commonly used metal oxide adsorbent is activated alumina, used primarily for gas drying. Occasionally, metal oxides find applications in specific chemisorption systems. For example, several processes are under development utilizing lime or limestone for removal of sulfur oxides from flue gases. Activated aluminas have surface areas in the range of 200 to 1,000 ftVft Average pore diameters range from about 30 to 80 A. [Pg.468]

Zeolites are crystalline alumina-silicates having a regular pore structure. Their basic building blocks are silica and alumina tetrahedra. Each tetrahedron consists of silicon or aluminum atoms at the center of the tetrahedron with oxygen atoms at the comers. Because silicon and aluminum are in a +4 and +3 oxidation state, respectively, a net charge of -1 must be balanced by a cation to maintain electrical neutrality. [Pg.130]

In zeolite synthesis (ref. 2) an aqueous mixture containing a silicon source, an aluminum source, an alkali source (usually NaOH) is autoclaved and subjected to hydrothermal treatment. Hydrated Na-ions are then filling the pore system in the as-synthesized zeolite. In the case of relatively high Si/Al zeolites an organic template is required which is usually a tetraalkylammonium compound, applied as the bromide or the hydroxide. [Pg.204]

A mixture of lignosulfonates, alkali-treated brown coal, and minor amounts of organic silicon compounds (e.g., ethyl silicone) reduces the permeability of cements [1019]. The additives may interact with the crystallization centers of the cement slurry and form a gel system in its pores and capillaries, thus reducing the permeability of the cement and increasing its isolating capability. Furthermore, it is claimed that the additive retards the setting rate of cement up to 200° C and increases the resistance to corrosive media. [Pg.148]

Beton and co-workers extended the hydrogen bonding approach to two-component systems, generating a number of structures that utilise different molecular motifs.24 26 In the case of perylene tetracarboxylic diimide (PTCDI) co-adsorbed with melamine (1,3,5-triazine-2,4,6-triamine) on a silver-terminated silicon surface, a network is formed in which the straight edges correspond to PTCDI with melamine at the vertices (Figure 11.6). The network shows large-area pores that the authors used to trap heptamers of C6o molecules. [Pg.208]

Fig. 3.1.8 The Arrhenius plots of the selfdiffusion coefficients of acetone in porous silicon with 3.6-nm pore diameter at different pore concentrations 0 = 0.6 (circles),... Fig. 3.1.8 The Arrhenius plots of the selfdiffusion coefficients of acetone in porous silicon with 3.6-nm pore diameter at different pore concentrations 0 = 0.6 (circles),...
Fig.3.1.9 (a) The adsorption-desorption isotherm (circles, right axis) and the self-diffusion coefficients D (triangles, left axis) for cyclohexane in porous silicon with 3.6-nm pore diameter as a function of the relative vapor pressure z = P/PS1 where Ps is the saturated vapor pressure, (b) The self-diffusion coefficients D for acetone (squares) and cyclohexane (triangles) as a function of the concentration 0 of molecules in pores measured on the adsorption (open symbols) and the desorption (filled symbols) branches. [Pg.244]

Soluble polysilane polymers can also be used as precursors to silicon carbide. The first such application, using (PhMeSi)n-(Me2Si)m copolymers ("Polysilastyrene"), was to strengthen silicon nitride ceramics. The Si3N4 ceramic body was soaked in polysilane and refired, leading to the formation of silicon carbide whiskers in the pore spaces and a consequent increase in strength. (U)... [Pg.16]

Cancrinites are one of the rarest members of the feldspathoid group, classified as such due to its low silicon content. However, cancrinite is also classified as a zeolite, due to its open pore structure, which confers molecular sieve properties [1], Likewise, variable sodium carbonate and NaOH concentrations in the hydrothermal synthesis of cancrinite could direct the synthesis of the intermediate phase or the disordered cancrinite formation [2], The intermediate phase is described as a phase between cancrinite and sodalite [3], The disordered cancrinite is an intermediate phase which is much closer to the cancrinite structure than sodalite structure [2],... [Pg.145]

Fig. 7 Schematics of a nanometer scale M-A-M diode (not drawn to scale in relative thickness). Top schematic is the cross section of a silicon wafer with a nanometer scale pore etched through a suspended silicon nitride membrane. Middle and bottom schematics show a Au/SAM/Au junction formed in the pore area. (Reprinted with permission from [30])... Fig. 7 Schematics of a nanometer scale M-A-M diode (not drawn to scale in relative thickness). Top schematic is the cross section of a silicon wafer with a nanometer scale pore etched through a suspended silicon nitride membrane. Middle and bottom schematics show a Au/SAM/Au junction formed in the pore area. (Reprinted with permission from [30])...
Acidifying the sample causes colloids and fine sediments that passed through the filter to gradually dissolve, yielding abnormally high concentrations of elements such as aluminum, iron, silicon, and titanium when the fluid is analyzed. Figure 6.4, from a study of this problem by Kennedy et al. (1974), shows how the pore size of the filter paper used during sample collection affects the concentrations determined for aluminum and iron. [Pg.95]

This can be related to the fact that the Si atoms substituting Al in the framework during the SiCl treatment originate outside the zeolite (i.e. from SiCl,), while in the steam/ acid treatment the corresponding silicon atoms originate in other parts of the zeolite crystals. This can also explain the absence of "secondary" pores in the material prepared with SiCl, as shown by sorption isotherms for different hydrocarbons (27). [Pg.173]


See other pages where Pore silicon is mentioned: [Pg.214]    [Pg.113]    [Pg.187]    [Pg.292]    [Pg.214]    [Pg.113]    [Pg.187]    [Pg.292]    [Pg.1704]    [Pg.2782]    [Pg.2784]    [Pg.252]    [Pg.995]    [Pg.151]    [Pg.451]    [Pg.56]    [Pg.38]    [Pg.41]    [Pg.360]    [Pg.527]    [Pg.189]    [Pg.308]    [Pg.242]    [Pg.469]    [Pg.42]    [Pg.88]    [Pg.122]    [Pg.59]    [Pg.491]    [Pg.38]    [Pg.240]    [Pg.130]    [Pg.218]    [Pg.97]    [Pg.106]    [Pg.120]    [Pg.161]    [Pg.168]    [Pg.175]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



© 2024 chempedia.info