Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane operation

Recommended tools Size limitations Grades of polyurethanes Operation speeds Work holding suggestions Note... [Pg.100]

A pilot plant was opened in the UK by ICI in 1998 to look at the feasibility of chemically recycling polyurethane, their method being a process called split-phase glycolysis [8]. Like hydrolysis, the method is complicated by the presence of by-products. Commercial depolymerisation units using the glycolysis of polyurethanes operate in Germany, Austria and Denmark [4]. The requirement for separation can be avoided in this case by further chemical reactions. The basic chemistry involved in these reactions is presented by Ehrig [9] for those who require further details. [Pg.114]

Catalysis of the flexible polyurethane foaming operation is accompHshed through the use of tertiary amine compounds, often using two different amines to balance the blowing and gelling reactions. OrganometalHc compounds, usually staimous salts, are also used to faciHtate gelling and promote final cure. [Pg.417]

Polymers. AH nitro alcohols are sources of formaldehyde for cross-linking in polymers of urea, melamine, phenols, resorcinol, etc (see Amino RESINS AND PLASTICS). Nitrodiols and 2-hydroxymethyl-2-nitro-l,3-propanediol can be used as polyols to form polyester or polyurethane products (see Polyesters Urethane polymers). 2-Methyl-2-nitro-l-propanol is used in tires to promote the adhesion of mbber to tire cord (qv). Nitro alcohols are used as hardening agents in photographic processes, and 2-hydroxymethyl-2-nitro-l,3-propanediol is a cross-linking agent for starch adhesives, polyamides, urea resins, or wool, and in tanning operations (17—25). Wrinkle-resistant fabric with reduced free formaldehyde content is obtained by treatment with... [Pg.61]

A hst of polyol producers is shown in Table 6. Each producer has a varied line of PPO and EOPO copolymers for polyurethane use. Polyols are usually produced in a semibatch mode in stainless steel autoclaves using basic catalysis. Autoclaves in use range from one gallon (3.785 L) size in research faciUties to 20,000 gallon (75.7 m ) commercial vessels. In semibatch operation, starter and catalyst are charged to the reactor and the water formed is removed under vacuum. Sometimes an intermediate is made and stored because a 30—100 dilution of starter with PO would require an extraordinary reactor to provide adequate stirring. PO and/or EO are added continuously until the desired OH No. is reached the reaction is stopped and the catalyst is removed. A uniform addition rate and temperature profile is required to keep unsaturation the same from batch to batch. The KOH catalyst can be removed by absorbent treatment (140), extraction into water (141), neutralization and/or crystallization of the salt (142—147), and ion exchange (148—150). [Pg.353]

Polyurethanes. These polymers can be considered safe for human use. However, exposure to dust, generated in finishing operations, should be avoided. Ventilation, dust masks, and eye protection are recommended in foam fabrication operations. Polyurethane or polyisocyanurate dust may present an explosion risk under certain conditions. Airborne concentrations of 25—30 g/m are required before an explosion occurs. Inhalation of thermal decomposition products of polyurethanes should be avoided because carbon monoxide and hydrogen cyanide are among the many products present. [Pg.353]

The annular gap mill shown in Fig. 20-36 is avariation of the bead mill. It has a high-energy input as shown in Fig. 20-37. It may be lined with polyurethane and operated in multipass mode to narrow the residence-time distribution and to aid cooling. [Pg.1854]

Several materials designated as thermoplastic polyurethanes have been introduced onto the market but many of them are slightly cross-linked and this may be increased permanently by a post-curing operation after shaping. One product may, however, be regarded as truly thermoplastic (Estane by Goodrich). [Pg.790]

Operating conditions are important determinants of the choice of filter media and sealant used in the cartridges. Some filter media, such as cellulose paper filters, are useful only at relatively low temperatures of 95 to 150"C (200 to 300°F). For high-temperature flue gas streams, more thermally stable filter media, such as nonwoven polyester, polypropylene, or Nomex, must be used. A variety of commercially available sealants such as polyurethane plastic and epoxy will allow fabric operating temperatures up tol50°C (300°F). Selected sealants such as heat cured Plasitcol will withstand operating temperatures up to 200°C (400°F). [Pg.415]

In the special case of pipelines operating at relatively high temperatures such as for the transmission of heavy fuel oil at up to 85°C, heat insulation and electrical insulation are provided by up to 50 mm of foam-expanded polyurethane. As a further insurance against penetration of water, and to prevent mechanical damage, outer coatings of polyethylene (5 mm), butyl laminate tape (0-8 mm) or coal-tar enamel reinforced with glass fibre (2-5 mm) have been used. [Pg.658]

Polyester polyurethanes are usually based on a blend of a quasi-prepolymer (polyester/MDl) and a diol/polyester suitable for spray-up operation. An alternative is to use a solvent-containing system using blocked curatives to give an extended pot-life of 2 to 3 hours enabling them to be brush, roller or spray applied. [Pg.941]

Conventional machining operations are used preferably from the same plastic to be used in the product (Chapter 8, SECONDARY EQUIPMENT). Different casting techniques are used that provide low cost even though they are usually labor intensive. The casting of unfilled or filled/reinforced plastic used include TS polyurethane, epoxy, structural foam, and RTV silicone. Also used are die cast metals. [Pg.178]

We can make polyurethanes via one- or two-step operations. In the single-stage process, diols and isocyanates react directly to form polymers. If we wish to make thermoplastic linear polymers, we use only diisocyanates. When thermosets are required, we use a mixture of diisocyanates and tri- or polyisocyanates residues of the latter becoming crosslinks between chains. In the first step of the two-stage process, we make oligomers known as prepolymers, which are terminated either by isocyanate or hydroxyl groups. Polymers are formed in the second step, when the isocyanate terminated prepolymers react with diol chain extenders, or the hydroxyl terminated prepolymers react with di- or polyisocyanates. [Pg.386]

Experimental Materials. All the data to be presented for these illustrations was obtained from a series of polyurethane foam samples. It is not relevant for this presentation to go into too much detail regarding the exact nature of the samples. It is merely sufficient to state they were from six different formulations, prepared and physically tested for us at an industrial laboratory. After which, our laboratory compiled extensive morphological datu on these materials. The major variable in the composition of this series of foam saaqples is the aaK>unt of water added to the stoichiometric mixture. The reaction of the isocyanate with water is critical in determining the final physical properties of the bulk sample) properties that correlate with the characteristic cellular morphology. The concentration of the tin catalyst was an additional variable in the formulation, the effect of which was to influence the polymerization reaction rate. Representative data from portions of this study will illustrate our experiences of incorporating a computer with the operation of the optical microscope. [Pg.158]

Flame retardants currently in use which operate by inhibiting vapor phase flame chemistry may be far from optimum. Those flame retardant systems which evolve hydrogen chloride, and perhaps even those which evolve hydrogen bromide, may be acting by little more than a physical effect (1). Some of our own work on tris(dichloroisopropyl) phosphate in polyurethane foams also suggests a physical mode of action (2). [Pg.97]


See other pages where Polyurethane operation is mentioned: [Pg.100]    [Pg.101]    [Pg.101]    [Pg.101]    [Pg.100]    [Pg.101]    [Pg.101]    [Pg.101]    [Pg.167]    [Pg.93]    [Pg.348]    [Pg.536]    [Pg.102]    [Pg.354]    [Pg.331]    [Pg.298]    [Pg.161]    [Pg.49]    [Pg.31]    [Pg.125]    [Pg.835]    [Pg.880]    [Pg.59]    [Pg.111]    [Pg.898]    [Pg.208]    [Pg.213]    [Pg.268]    [Pg.26]    [Pg.316]    [Pg.581]    [Pg.582]    [Pg.1243]    [Pg.88]    [Pg.93]    [Pg.386]    [Pg.398]    [Pg.159]    [Pg.5]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



© 2024 chempedia.info