Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic polysulfides

Various types of condensation polymers such as aromatic polysulfonates and polysulfides, aromatic polyethers, aliphatic and aromatic polysulfides, and carbon-carbon chain polymers of high molecular weights by the phase-transfer catalyzed polycondensation fi-om combinations of aromatic disulfonyl chlorides, phosphonic dichlorides, activated aromatic dichlorides, and aliphatic dihalides, withbisphenol, aliphatic and aromatic dithiols, and active ethylene compounds. The two-phase polycondensation was generally carried out in a water-immiscible organic solvent-aqueous alkaline solution system at room temperature. The method of polycondensation offers a highly versatile and convenient synthetic method for a variety of condensation polymers. [Pg.818]

Zinin Reduction. The method of reducing aromatic nitro compounds with divalent sulfur is known as the Zinin reduction (57). This reaction can be carried out in a basic media using sulfides, polysulfides, or hydrosulfides as the reducing agent. These reactions can be represented as follows when the counter ion is sodium ... [Pg.262]

Uses. The reaction of S2CI2 with aromatic compounds can yield disulfides or mixtures of mono-, di-, and polysulfides. [Pg.138]

Sulfur Dyes. These dyes are synthesized by heating aromatic amines, phenols, or nitro compounds with sulfur or, more usually, alkah polysulfides. Unlike most other dye types, it is not easy to define a chromogen for the sulfur dyes (qv). It is likely that they consist of macromolecular stmctures of the phenothiazone-thianthrone type (72), in which the sulfur is present as (sulfide) bridging links and thiazine groups (1). [Pg.284]

Polysulfide Good resistance to aromatic solvents unusually high impermeability to gases poor compression set and poor resistance to oxidizing acids... [Pg.2471]

Polysulfide 150 Excellent resistance to oils, gasoline, aliphatic and aromatic hydrocarbon solvents. Very good water resistance, good alkali resistance, fair acid resistance. Poor mechanical properties. [Pg.2474]

Recently, the above mentioned model reaction has been extended to polycondensation reactions for synthesis of polyethers and polysulfides [7,81]. In recent reports crown ether catalysts have mostly been used in the reaction of a bifunctional nucleophile with a bifunctional electrophile, as well as in the monomer species carrying both types of functional groups [7]. Table 5 describes the syntheses of aromatic polyethers by the nucleophilic displacement polymerization using PTC. [Pg.42]

The manufacture of sulfur dyes involves sulfurisation processes, the chemistry of which remains rather mysterious and may arguably be considered still to be in the realms of alchemy The processes involve heating elemental sulfur or sodium polysulfide, or both, with aromatic amines, phenols or aminophenols. These reactions may be carried out either as a dry bake process at temperatures between 180 and 350 °C or in solvents such as water or aliphatic alcohols at reflux or at even higher temperatures under pressure. C. I. Sulphur Black 1, for example, is prepared by heating 2,4-dinitrophenol with sodium polysulfide. [Pg.116]

Aliphatic iodine derivatives, 14 376 Aliphatic ketones, 14 563, 571, 581-585 reactions of, 16 331-332 Aliphatic monothiopolyesters, 23 739 Aliphatic nitration, 12 187 Aliphatic peroxyacids, 13 464 Aliphatic peroxycarboxylic acids, 18 463 Aliphatic phosphines, 19 60 Aliphatic polyamides (PA), 10 207-210 19 713, 739. See also Aromatic polyamides PA entries producers of, 10 210 properties of, 10 208, 209t Aliphatic polycarbonates, 24 703 preparation of, 19 798 Aliphatic polyketones (PK), 10 197 costs of, 10 222 properties of, 10 198t Aliphatic poly(monosulfide)s, 23 702-704 Aliphatic polyphosphonate dyes, 9 480 Aliphatic poly(polysulfide)s, 23 711 Aliphatic polysulfides, 23 734 Aliphatic polysulfoxides, 23 733 miscibility of, 23 735 Aliphatic polyurea preparation, carbonyl sulfide in, 23 625... [Pg.28]

Oxidation may be achieved in the presence of oxygen or air. Other suitable oxidants include sulfur, sodium polysulfide, iron (III) chloride, potassium ferro-cyanide (III) or potassium dichromate, peroxydisulfate or salts of aromatic nitro-sulfonic acids. An aqueous/alkaline medium is used in the presence of a high boiling organic solvent which is not miscible with water or which is almost immiscible with water. Cyclization with chlorosulfonic acid can be followed directly by oxidation with bromine to afford the thioindigo system, without separation of the intermediate. [Pg.496]

The technically most important polysulfide is poly thiophenylene or poly(p-phe-nylene sulfide), PPS. It is obtained by reacting sodium sulfide and p-dichlo-robenzene in a polar solvent, for example, l-methyl-2-pyrrolidone at about 280 °C under pressure. The mechanism of the reaction is very complex and cannot be described by a simple aromatic substitution. This synthesis requires special autoclaves and is therefore not suitable for a laboratory course (for an experimental procedure see Table 2.3). [Pg.308]

Thiokol elastomers possess fairly low tensile and tear properties. However, they have excellent resistance to both aliphatic and aromatic solvents at room temperature and slightly elevated temperatures. The Thiokol division of Morton International Corporation is the supplier of polysulfide elastomers in the United States. It is estimated that 1360—1600 t are used annually in the United States. The primary use of polysulfide is in seals, gaskets, rolls, and diaphragms where solvent resistance and low permeability are useful. [Pg.234]

The liquid polymer is converted to the rubbery state by reagents that react with mercaptan (-SH) and side groups of the polymer segments by oxidation, addition or condensation to effect sulfide (-S-S-) bond formation. The oxidation reactions are exothermic and accelerated by an alkaline environment. The most commonly employed oxidizing agents which are suitable for curing liquid polymers are cobalt or manganese or lead octoate, p-quinonedioxime and di- or tri-nitrobenzene. Epoxy resin also reacts with liquid polysulfide polymers by addition in the presence of an aliphatic or aromatic amine and polyamide activator as shown in Equation 5.8 ... [Pg.352]

Shipment and. Storage, Sulfur monochloride is minimally corrosive to carbon steel and iron when dry. If it is necessary to avoid discoloration caused by iron sulfide formation or chloride stress cracking, 310 stainless steel should be used. Sulfur monochloride is shipped in tank cars, tank trucks, and steel drums. When wet, it behaves like hydrochloric acid and attacks steel, cast iron, aluminum, stainless steels, copper and copper alloys, and many nickel-based materials. Alloys of 62 Ni—28 Mo and 54 Ni—15 Cr—16 Mo are useful under these conditions. Under DOT HM-181 sulfur monochloride is classified as a Poison Inhalation Hazard (PIH) Zone B, as well as a Corrosive Material (DOT Hazard Class B). Shipment information is available (140). Uses, The reaction of S-CL with aromatic compounds can yield disulfides or mixtures of mono-, di-, and polysulfides. [Pg.138]

Many compounds have been tested as ignition quality improvers—additives which shorten the ignition delay to a desirable duration. An extensive review in 1944 (6, 43) listed 303 references, 92 dealing with alkyl nitrates and nitrites 61 with aldehydes, ketones, esters, and ethers 49 with peroxides 42 with aromatic nitro compounds 29, with metal derivatives 28 with oxidation and oxidation products 22 with polysulfides 16 with aromatic hydrocarbons nine with nitration and four with oximes and nitroso compounds. In 1950, tests at the U. S. Naval Engineering Experiment Station (48) showed that a concentration of 1.5% of certain peroxides, alkyl nitrates, nitroaikanes, and nitrocarbamates increased cetane number 20 or more units. [Pg.239]

Lithium aluminum hydride is a convenient reagent for reduction of nitro compounds, nitriles, amides, azides, and oximes to primary amines. Catalytic hydrogenation works also. Aromatic nitro compounds are reduced best by reaction of a metal and aqueous acid or with ammonium or sodium polysulfides (see Section 23-12B). Reduction of /V-substituted amides leads to secondary amines. [Pg.1607]

The addition of aromatic thiols, ArS-, to cyanamide, NCNH2, is general acid catalysed, giving isothiourea as product.311 A significant movement of a hydron in the TS to the cyano nitrogen atom is indicated. The reactivity of sulfur towards thio-carboxylate ions (341 R = Ph, Me, Bu ) has been looked at and among the species formed are Sj/Sf polysulfide ions (342) and (343).312... [Pg.89]

Sulfur dyes are a special class of dyes with regard to both preparation and application, and knowledge of their chemical constitution [1], They are made by heating aromatic or heterocyclic compounds with sulfur or species that release sulfur. Sulfur dyes are classified by method of preparation as sulfur bake, polysulfide bake, and polysulfide melt dyes. Sulfur dyes are not well-defined chemical compounds but mixtures of structurally similar compounds, most of which contain various amounts of both heterocyclic and thiophenolic sulfur. [Pg.78]


See other pages where Aromatic polysulfides is mentioned: [Pg.392]    [Pg.104]    [Pg.171]    [Pg.37]    [Pg.45]    [Pg.77]    [Pg.1553]    [Pg.1567]    [Pg.106]    [Pg.171]    [Pg.103]    [Pg.301]    [Pg.92]    [Pg.135]    [Pg.151]    [Pg.304]    [Pg.308]    [Pg.392]    [Pg.167]    [Pg.1216]    [Pg.1237]    [Pg.104]    [Pg.993]    [Pg.17]    [Pg.78]   
See also in sourсe #XX -- [ Pg.976 ]




SEARCH



Aromatic Polysulfide Ethers

Aromatic Polysulfides Poly(arylene Sulfide)s

Polysulfide

Polysulfide, aliphatic aromatic

Polysulfides

© 2024 chempedia.info