Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene lithiated

A study of methods for controlling the grafting sites of polystyrene polymers may serve as an example for the quantitative and structural analysis of the site of lithiation. Trimethylsilyl chloride serves as the quenching agent owing to the low incidence of side reactions besides metal replacement. Thus, on varying the conditions of metallation of low molecular weight polystyrene (409) and poly(4-methylstyrene) (410), aromatic and... [Pg.411]

Finally, the lithiation of a soluble chloromethylated polystyrene 16 (prepared by AIBN-indnced copolymerization of styrene and 4-chloromethylstyrene in a 3 1 molar ratio) with lithinm and a catalytic amonnt of DTBB (10%) in THF at —78 °C gave the expected... [Pg.652]

Polystyrene and its divinylbenzene cross-linked copolymer have been most widely exploited as the polymer support for anchoring metal complexes. A large variety of ligands containing N, P or S have been anchored on the polystyrene-divinylbenzene matrix either by the bromination-lithiation pathway or by direct interaction of the ligand with C1-, Br- or CN-methylated polystyrene-divinyl-benzene network [14] (Fig. 7). [Pg.95]

Farrall and Frechet recognized the possibility of forming polymer-bound boronic acids in 1976.66 Supported pnra-benzeneboronic acid groups were generated by direct lithiation of polystyrene, giving a para-lithio intermediate that could be used to generate a host of other resins also (Scheme 27). Conversion to the boronic acid was one of the more successful transformations. The purpose of this transformation was to allow the attachment of sugars to the solid phase via the boronate. [Pg.48]

A flexible means of access to functionalized supports for solid-phase synthesis is based on metallated, cross-linked polystyrene, which reacts smoothly with a wide range of electrophiles. Cross-linked polystyrene can be lithiated directly by treatment with n-butyllithium and TMEDA in cyclohexane at 60-70 °C [1-3] to yield a product containing mainly meta- and para-Iithiated phenyl groups [4], Metallation of noncross-linked polystyrene with potassium ferf-amylate/3-(lithiomethyl)heptane has also been reported [5], The latter type of base can, unlike butyllithium/TMEDA [6], also lead to benzylic metallation [7]. The C-Iithiation of more acidic arenes or heteroar-enes, such as imidazoles [8], thiophenes [9], and furans [9], has also been performed on insoluble supports (Figure 4.1). These reactions proceed, like those in solution, with high regioselectivity. [Pg.159]

Figure 4.1. Lithiation of polystyrene-bound arenes and heteroarenes [1,8-10],... Figure 4.1. Lithiation of polystyrene-bound arenes and heteroarenes [1,8-10],...
Figure 4.3. Preparation of polystyrene-bound organometallic compounds by transmetallation and direct lithiation [16,25,26,29],... Figure 4.3. Preparation of polystyrene-bound organometallic compounds by transmetallation and direct lithiation [16,25,26,29],...
Support-bound stannanes have been prepared from phenyllithium bound to macro-porous polystyrene and chlorostannanes [14,41], by treatment of support-bound alkyl chlorides with lithiated stannanes [21,41], and by radical or palladium-mediated addition of stannanes to alkenes and alkynes (Figure 4.7 [42-47]). The chloride of poly-styrene-bound chlorostannanes can be displaced by treatment with arylzinc reagents, thereby yielding resin-bound arylstannanes [46]. Polystyrene-bound stannanes have also been prepared by copolymerization of 4-[2-(dibutylchlorostannyl)ethyl]styrene with styrene and divinylstyrene [48],... [Pg.164]

The iodination of cross-linked polystyrene has been achieved using iodine under strongly acidic reaction conditions [55] or in the presence of thallium(III) acetate [61], but this reaction does not proceed as smoothly as the bromination. More electron-rich arenes, such as thiophenes [45,62-64], furans [46], purines [65], indoles [66], or phenols [67,68] are readily halogenated, even in the presence of oxidant-labile linkers (Figure 6.2). Polystyrene-bound thiophenes have also been iodinated by lithiation with LDA followed by treatment with iodine [64],... [Pg.209]

Some strategies used for the preparation of support-bound thiols are listed in Table 8.1. Oxidative thiolation of lithiated polystyrene has been used to prepare polymeric thiophenol (Entry 1, Table 8.1). Polystyrene functionalized with 2-mercaptoethyl groups has been prepared by radical addition of thioacetic acid to cross-linked vinyl-polystyrene followed by hydrolysis of the intermediate thiol ester (Entry 2, Table 8.1). A more controllable introduction of thiol groups, suitable also for the selective transformation of support-bound substrates, is based on nucleophilic substitution with thiourea or potassium thioacetate. The resulting isothiouronium salts and thiol acetates can be saponified, preferably under reductive conditions, to yield thiols (Table 8.1). Thiol acetates have been saponified on insoluble supports with mercaptoethanol [1], propylamine [2], lithium aluminum hydride [3], sodium or lithium borohydride, alcoholates, or hydrochloric acid (Table 8.1). [Pg.239]

Thioethers have also been prepared on cross-linked polystyrene by radical addition of thiols to support-bound alkenes and by reaction of support-bound carbon radicals (generated by addition of carbon radicals to resin-bound acrylates) with esters of l-hydroxy-l,2-dihydro-2-pyridinethione ( Barton esters Entry 6, Table 8.5). Additional methods include the reaction of metallated supports with symmetric disulfides (Entries 7-9, Table 8.5) and the alkylation of polystyrene-bound, a-lithiated thioani-sole [65],... [Pg.244]

Thiophene is sufficiently acidic to be directly metallated upon treatment with n-BuLi (see Figure 4.1). This direct lithiation can also be realized with polystyrene-bound 3-(alkoxymethyl)thiophene [96]. The resulting organolithium compounds react as expected with several electrophiles, such as amides (to yield ketones), alkyl halides, aldehydes, and Me3SiCl [96]. [Pg.406]

Sulfinate and sulfone functional groups have been formed 355 by the reaction of sulfur dioxide with partially lithiated polystyrene. This reaction scheme follows ... [Pg.79]

Block copolymers, polyclhylcnc-fr/oc/c-polystyrene (PE-fc-PS) and PP-fo-PS, were prepared by the polymerization of styrene with terminally lithiated PO macroinitiators [31]. [Pg.85]

Bachmann and Seebach [159] have reported the preparation and characterization of cyclic lactones (MeCHCH2C(0)0)n, where n = 4 and 8. The reaction product between butyl lithium in benzene and the solid polystyrene support PS-C6H4CH2NH2 leads to a lithiated species that can be represented as PS-Cfd bCI 12N11 Li(BuI i)x, where x 4 is active in the ring-opening of the cyclic esters L-lactide, rac-lactide, and 2,5-morpholinediones, leading to their respective cyclic oligoesters and cyclodepsipeptides (Fig. 49) [160]. The... [Pg.164]

Farall MJ, Frechet JMJ, Bromination and lithiation two important steps in the functionalization of polystyrene resins, J. Org. Chem., 41 3877-3882, 1976. [Pg.104]

Polymeric supports can also be used with advantage to form monofunctional moieties from difunctional (Hies. Leznoff has used this principal in the synthesis of sex attractants on polymer supports (67). Starting from a sheap symmetrical diol he blocked one hydroxyl group by the polymer. Functionalization of cross-linked polymers is mostly performed by chloromethylation (65). A very promising method to introduce functional groups into crosslinked styrene-divinylbenzene copolymers is the direct lithiation with butyllithium in presence of N,N,N, N -tetramethyl-ethylenediamine (TMEDA) (69, 70). Metalation of linear polystyrene with butyl-lithium/TMEDA showed no exchange of benzylic hydrogen and a ratio of attack at m/p-position of 2 1 (71). In the model reaction of cumene with amylsodium, a kinetic control of the reaction path is established. After 3h of treatment with amyl-sodiuni, cumene is metalated 42% in a-, 39% m-, and 19% p-position. After 20h the mixture equilibrates to affort 100% of the thermodynamically more stable a-prod-uct (72). [Pg.20]

The above mentioned polymer-supported oxazaborolidines are prepared from polymeric amino alcohols and borane. Another preparation of polymer-supported oxazaborolidines is based on the reaction of polymeric boronic acid with chiral amino alcohol. This type of polymer can be prepared only by chemical modification. Lithiation of the polymeric bromide then successive treatment with trimethyl borate and hydrochloric acid furnished polymer beads containing arylboronic acid residues 31. Treatment of this polymer with (li ,2S)-(-)-norephedrine and removal of the water produced gave the polymer-supported oxazaborolidine 32 (Eq. 14) [41 3]. If a,a-diphenyl-2-pyrrolidinemetha-nol was used instead of norephedrine the oxazaborolidine polymer 33 was obtained. The 2-vinylthiophene-styrene-divinylbenzene copolymer, 34, has been used as an alternative to the polystyrene support, because the thiophene moiety is easily lithiated with n-butyl-lithium and can be further functionalized. The oxazaborolidinone polymer 37 was then obtained as shown in Sch. 2. Enantioselectivities obtained by use of these polymeric oxazaborolidines were similar to those obtained by use of the low-molecular-weight counterpart in solution. For instance, acetophenone was reduced enantioselectively to 1-phe-nylethanol with 98 % ee in the presence of 0.6 equiv. polymer 33. Partial elimination of... [Pg.955]

Me, Ph, CjH FeCp) A series of fluorinated alcohol derivatives were also prepared.The addition of (Me2SiO)3 followed by Me3SiCl or further addition of cyclosiloxane gives slloxane or poly (slloxane) substituents. The addition of CO2 to the lithiated intermediate gives a carboxylate function which can be converted to the free acid or esterifled with p-nitrobenzylbromide. The addition of styrene to [NP(CH2Li)Ph] causes anonic polymerization of styrene and thus the formation of poly(methylphenylphosphazene)-graft-polystyrene copolymers. [Pg.321]

The reaction of lithiated DBU 40 with chloromethylated or w-bromoalkylated polystyrene resins resulted in polystyrene-supported DBU... [Pg.90]

The lithiation of poly(styrene-DVB) can be carried out according to two reaction routes. The first involves the transformation of -Br groups into -Li groups by reaction of a brominated polystyrene with an excess of n-butyllithium (15,16). The second involves the direct lithiation of poly(styrene-DVB) by reacting the resin with n-butyllithium and N,N,N, N -tetramethyl-ethylenediamine (TMEDA)(15,17). [Pg.19]


See other pages where Polystyrene lithiated is mentioned: [Pg.27]    [Pg.41]    [Pg.1444]    [Pg.19]    [Pg.762]    [Pg.76]    [Pg.265]    [Pg.113]    [Pg.118]    [Pg.2]    [Pg.159]    [Pg.161]    [Pg.161]    [Pg.171]    [Pg.259]    [Pg.313]    [Pg.401]    [Pg.88]    [Pg.1581]    [Pg.42]    [Pg.46]    [Pg.138]    [Pg.1581]    [Pg.145]    [Pg.948]    [Pg.77]    [Pg.265]    [Pg.26]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Lithiation of polystyrene

© 2024 chempedia.info