Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers formed radicals

This important equation shows that the stationary-state free-radical concentration increases with and varies directly with and inversely with. The concentration of free radicals determines the rate at which polymer forms and the eventual molecular weight of the polymer, since each radical is a growth site. We shall examine these aspects of Eq. (6.23) in the next section. We conclude this section with a numerical example which concerns the stationary-state radical concentration for a typical system. [Pg.363]

Bulk Polymerization. This is the method of choice for the manufacture of poly(methyl methacrylate) sheets, rods, and tubes, and molding and extmsion compounds. In methyl methacrylate bulk polymerization, an auto acceleration is observed beginning at 20—50% conversion. At this point, there is also a corresponding increase in the molecular weight of the polymer formed. This acceleration, which continues up to high conversion, is known as the Trommsdorff effect, and is attributed to the increase in viscosity of the mixture to such an extent that the diffusion rate, and therefore the termination reaction of the growing radicals, is reduced. This reduced termination rate ultimately results in a polymerization rate that is limited only by the diffusion rate of the monomer. Detailed kinetic data on the bulk polymerization of methyl methacrylate can be found in Reference 42. [Pg.265]

Allyl alcohol, CH2=CH—CH2OH (2-propen-l-ol) [107-18-6] is the simplest unsaturated alcohol. One hydrogen atom can easily be abstracted from the aHyhc methylene (—CH2—) to form a radical. Since the radical is stabilized by resonance with the C=C double bond, it is very difficult to get high molecular weight polymers by radical polymerization. In spite of the fact that aHyl alcohol has been produced commercially for some years (1), it has not found use as a monomer in large volumes as have other vinyl monomers. [Pg.71]

The completion stage is identified by the fact that all the monomer has diffused into the growing polymer particles (disappearance of the monomer droplet) and reaction rate drops off precipitously. Because the free radicals that now initiate polymerization in the monomer-swollen latex particle can more readily attack unsaturation of polymer chains, the onset of gel is also characteristic of this third stage. To maintain desirable physical properties of the polymer formed, emulsion SBR is usually terminated just before or at the onset of this stage. [Pg.495]

This aminium radical salt in aqueous solution in the form of solvated radical salt is very stable and will not polymerize acrylonitrile even with CeHsCOONa to form the corresponding benzoate. Therefore, we believe that in the nucleophilic displacement, there must be some intermediate step, such as intimate ion pair and cyclic transition state, which will then proceed the deprotonation to form the active aminium radical ion [14], as shown in Scheme 1. The presence of the above aminomethyl radical has also been verified [15] through ultraviolet (UV) analysis of this polymer formed such as PAN or PMMA with the characteristic band as the end group. [Pg.228]

Formation of an intimate ion pair of OH " and aminium radical cation was also proposed for the intermediate step before deprotonation. The presence of the above radical was verified through UV analysis of the polymer formed with the characteristic band on the end group. Through chromatographic analysis of the TBH-DMT reaction products, H2O was detected as the above mechanism proposes after deprotonation. [Pg.232]

The great advantage of reactions like Scheme 33 and 34, as compared with the direct attachment of a photola-bile group to the polymer (see Scheme 24) is that in the former systems only polymer bound radicals are formed upon photolysis, whereas in the latter, additionally isolated small radicals are generated. Therefore, less homopolymer is produced in the photolytic step following reactions 33 and 34. [Pg.751]

Generation of radicals by redox reactions has also been applied for synthesizing block copolymers. As was mentioned in Section II. D. (see Scheme 23), Ce(IV) is able to form radical sites in hydroxyl-terminated compounds. Thus, Erim et al. [116] produced a hydroxyl-terminated poly(acrylamid) by thermal polymerization using 4,4-azobis(4-cyano pentanol). The polymer formed was in a second step treated with ceric (IV) ammonium nitrate, hence generating oxygen centered radicals capable of starting a second free radical polymeriza-... [Pg.751]

The furfuryl esters of acrylic and methacrylic acid polymerize via a free-radical mechanism without apparent retardation problems arising from the presence of the furan ring. Early reports on these systems described hard insoluble polymers formed in bulk polymerizations and the cross-linking ability of as little as 2% of furfuryl acrylate in the solution polymerization of methylacrylate121. ... [Pg.78]

In this early work, both initiation and termination were seen to lead to formation of structural units different from those that make up the bulk of the chain. However, the quantity of these groups, when expressed as a weight fraction of the total material, appeared insignificant. In a polymer of molecular weight 100,000 they represent only ca 0.2% of units Thus, polymers formed by radical polymerization came to be represented by, and their physical properties and chemistry interpreted in terms of, the simple formula 1. [Pg.2]

Such problems have led to a recognition of the importance of defect groups or structural irregularities.12 16 If we are to achieve an understanding of radical polymerization, and the ability to produce polymers with optimal, or at least predictable, properties, a much more detailed knowledge of the mechanism of the polymerization and of the chemical microstructure of the polymers formed is required.16... [Pg.3]

The low concentration of initiator residues in polymers formed by radical polymerization means that they can usually only be observed directly in exceptional circumstances or in very low molecular weight polymers (Section 3.5.3). Thus, the study of the reactions of initiator-derived radicals with monomers has seen the development of some novel techniques. Three basic approaches have been employed. These involve ... [Pg.133]

Polymer formed using radiolabeled initiators may be isolated and analyzed to determine the concentration of initiator-derived residues and calculate the initiator efficiency. Radiolabeled initiators have also been used extensively to establish the relati ve reactivity of monomers towards radicals. 107,5 -5 2... [Pg.145]

Intramolecular rearrangement of the initially formed radical may occur occasionally (e.g. backbiting - Section 4.4.3) or even be the dominant pathway (e.g. cyelopolymerization - Section 4.4.1, ring-opening polymerization - Section 4.4.2). These pathways can give rise to branches, rings, or internal unsaturation in the polymer chain. [Pg.167]

Most polymers formed by radical polymerization have an excess of syndiotactic over isotactic dyads [i.e, < 0.5]. / (m) typically lies in the range... [Pg.174]

Since that time, many studies by NMR and other techniques on the microstructure of acrylic and methacrylic polymers formed by radical polymerization have proved their predominant head-to-tail structure. [Pg.182]

The success of the multifunctional initiators in the preparation of block and graft copolymers depends critically on the kinetics and mechanism of radical production. In particular, the initiator efficiency, the susceptibility to and mechanism of transfer to initiator, and the relative stability of the various radical generating functions. Each of these factors has a substantial influence on the nature and homogeneity of the polymer formed. Features of the kinetics of polymerizations initiated by multifunctional initiators have been modeled by O Driscoll and Bevington 64 and Choi and Lei.265... [Pg.386]

The majority of polymers formed by living radical polymerization (NMP, ATRP, RAFT) will possess labile functionality at chain ends. Recent studies have examined the thermal stability of polystyrene produced by NMP with TEMPO (Scheme 8.3),2021 ATRP and RAFT (Scheme 8.4).22 In each case, the end groups... [Pg.416]

There have been many studies on the thermal and thermo-oxidative degradation of PMMA.23 24 It is well established that the polymer formed by radical polymerization can be substantially less stable than predicted by consideration of the idealized structure and that the kinetics of polymer degradation are dependent on the conditions used for its preparation. There is still some controversy surrounding the details of thermal degradation mechanisms and, in particular, the initiation of degradation.31... [Pg.417]

As in the case of PS (Section 8.2.1) polymers formed by living radical polymerization (NMP, ATRP, RAFT) have thermally unstable labile chain ends. Although PMMA can be prepared by NMP, it is made difficult by the incidence of cross disproportionation.42 Thermal elimination, possibly by a homolysis-cross disproportionation mechanism, provides a route to narrow polydispersity macromonomers.43 Chemistries for end group replacement have been devised in the case of polymers formed by NMP (Section 9.3.6), ATRP (Section 9.4) and RAFT (Section 9.5.3). [Pg.420]

Table 8.6. Effect of Lewis Acids on Taciicity of Polymers Formed in High Conversion Radical Polymerizations at 60 °C... Table 8.6. Effect of Lewis Acids on Taciicity of Polymers Formed in High Conversion Radical Polymerizations at 60 °C...
Analytical expressions have been derived for calculating dispcrsitics of polymers formed by polymerization with reversible chain transfer. The expression (eq. 17) applies in circumstances where the contributions to the molecular weight distribution by termination between propagating radicals, external initiation, and differential activity of the initial transfer agent are negligible.21384... [Pg.500]

Most reviews on living radical polymerization mention the application of these methods in the synthesis of end-lunctional polymers. In that ideally all chain ends are retained, and no new chains are formed (Section 9.1.2), living polymerization processes are particularly suited to the synthesis of end-functional polymers. Living radical processes are no exception in this regard. We distinguish two main processes for the synthesis of end-functional polymers. [Pg.531]


See other pages where Polymers formed radicals is mentioned: [Pg.316]    [Pg.553]    [Pg.271]    [Pg.316]    [Pg.553]    [Pg.271]    [Pg.456]    [Pg.220]    [Pg.495]    [Pg.36]    [Pg.32]    [Pg.16]    [Pg.325]    [Pg.233]    [Pg.747]    [Pg.16]    [Pg.162]    [Pg.71]    [Pg.103]    [Pg.106]    [Pg.181]    [Pg.193]    [Pg.281]    [Pg.298]    [Pg.414]    [Pg.417]    [Pg.419]    [Pg.421]    [Pg.428]    [Pg.549]    [Pg.872]   
See also in sourсe #XX -- [ Pg.293 , Pg.299 ]




SEARCH



Polymer radicals

Polymers Formed by Free Radical Mechanisms

© 2024 chempedia.info