Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible addition-fragmentation polymerization

Controlled/ living radical polymerization (CLRP) processes are well-established synthetic routes for the production of well-defined, low-molecular weight-dispersity polymers [99]. The types of CLRP processes (initiator-transfer agent-terminator (INIFERTER), atom transfer radical polymerization (ATRP), nitroxide-mediated radical (NMRP) polymerization, reversible addition-fragmentation transfer (RAFT)) and their characteristics are described in Section 3.8 of Chapter 3 and in Section 14.8 of Chapter 14. [Pg.199]

Several acronyms are used to describe these polymerizations Reversible Addition-Fragmentation Transfer (RAFT), Group transfer polymerization, Ring Opening Metathesis Polymerization (ROMP), Group Transfer polymerization. [Pg.25]

Heterogeneous controlled radical polymerization Reversible addition fragmentation transfer (RAFT) process... [Pg.411]

Figure 3 (a) Cumulative citations for our first communication on RAF (A), our first patent and our 2005 (°) review on RAF polymerization and that published in Polymer in 2008 (0). Based on SciFindet search carried out in February 2011.(b) Total publications, papers, and patents on RAF polymerization based on SciFinder search of terms RAF polymerization , reversible addition-fragmentation transfer and radical , and MADIX and radical . The term papers includes journal, articles, communications, letters, and reviews but does not include conference abstracts. [Pg.186]

Certain monomers may be able to act as reversible deactivators by a reversible addition-fragmentation mechanism. The monomers are 1,1-disubstituted and generate radicals that are unable or extremely slow to propagate or undergo combination or disproportionation. For these polymerizations the dormant species is a radical and the persistent species is the 1,1 -disubstituted monomer. [Pg.470]

Although the term RAFT (an acronym for Reversible Addition-Fragmentation chain Transfer)38" is sometimes used in a more general sense, it was coined to describe, and is most closely associated with, the reaction when it involves thiocarbonylthio compounds. RAFT polymerization, involving the use of xanthates, is also sometimes called MADIX (Macromolccular Design by Interchange of Xambate) 96 The process has been reviewed by Rizzardo et [Pg.502]

Phosphoranyl radicals can be involved [77] in RAFT processes [78] (reversible addition fragmentation transfer) used to control free radical polymerizations [79]. We have shown [77] that tetrathiophosphoric acid esters are able to afford controlled/living polymerizations when they are used as RAFT agents. This result can be explained by addition of polymer radicals to the P=S bond followed by the selective p-fragmentation of the ensuing phosphoranyl radicals to release the polymer chain and to regenerate the RAFT agent (Scheme 41). [Pg.66]

Synthesis of Block Copolymers by Reversible Addition-Fragmentation Chain Transfer Radical Polymerization, RAFT... [Pg.48]

Reverse transcriptase, 21 281 Reverse water-gas shift reactions, 5 14-15 Reversible addition-fragmentation chain transfer (RAFT), 7 621, 623 Reversible addition-fragmentation chain transfer (RAFT) polymerization,... [Pg.805]

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

Representative structm-e is Si/Si02//tethered block-6-outer block ATRP—atom transfer radical polymerization, RATRP—reverse atom transfer radical polymerization, RAFT—reversible addition fragmentation transfer polymerization... [Pg.131]

To make further use of the azo-initiator, tethered diblock copolymers were prepared using reversible addition fragmentation transfer (RAFT) polymerization. Baum and co-workers [51] were able to make PS diblock copolymer brushes with either PMMA or poly(dimethylacrylamide) (PDMA) from a surface immobihzed azo-initiator in the presence of 2-phenylprop-2-yl dithiobenzoate as a chain transfer agent (Scheme 3). The properties of the diblock copolymer brushes produced can be seen in Table 1. The addition of a free initiator, 2,2 -azobisisobutyronitrile (AIBN), was required in order to obtain a controlled polymerization and resulted in the formation of free polymer chains in solution. [Pg.132]

Scheme 3 Synthesis of surface-immobilized diblock copolymer brush (Si/Si02//PS-fc-PDMA) using reverse addition fragmentation transfer polymerization... Scheme 3 Synthesis of surface-immobilized diblock copolymer brush (Si/Si02//PS-fc-PDMA) using reverse addition fragmentation transfer polymerization...
Fijten MWM, Meier MAR, Hoogenboom R, Schubert US (2004) Automated parallel inves-tigations/optimizations of the reversible addition-fragmentation chain transfer polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 42 5775-5783... [Pg.13]

Paulus RM, Fijten MWM, de la Mar MJ, Hoogenboom R, Schubert US (2005) Reversible addition-fragmentation chain transfer polymerization on different synthesizer platforms. QSAR Comb Sci 24 863-867... [Pg.13]

Chiefari J, Chong YK, Ercole F (1998) Living free radical polymerization by reversible addition-fragmentation chain transfer -the RAFT process. Macromolecules 31 5559-5562... [Pg.59]

Hawker et al. 2001 Hawker and Wooley 2005). Recent developments in living radical polymerization allow the preparation of structurally well-defined block copolymers with low polydispersity. These polymerization methods include atom transfer free radical polymerization (Coessens et al. 2001), nitroxide-mediated polymerization (Hawker et al. 2001), and reversible addition fragmentation chain transfer polymerization (Chiefari et al. 1998). In addition to their ease of use, these approaches are generally more tolerant of various functionalities than anionic polymerization. However, direct polymerization of functional monomers is still problematic because of changes in the polymerization parameters upon monomer modification. As an alternative, functionalities can be incorporated into well-defined polymer backbones after polymerization by coupling a side chain modifier with tethered reactive sites (Shenhar et al. 2004 Carroll et al. 2005 Malkoch et al. 2005). The modification step requires a clean (i.e., free from side products) and quantitative reaction so that each site has the desired chemical structures. Otherwise it affords poor reproducibility of performance between different batches. [Pg.139]


See other pages where Reversible addition-fragmentation polymerization is mentioned: [Pg.616]    [Pg.93]    [Pg.43]    [Pg.1292]    [Pg.84]    [Pg.48]    [Pg.628]    [Pg.48]    [Pg.616]    [Pg.93]    [Pg.43]    [Pg.1292]    [Pg.84]    [Pg.48]    [Pg.628]    [Pg.48]    [Pg.7]    [Pg.297]    [Pg.456]    [Pg.592]    [Pg.605]    [Pg.616]    [Pg.629]    [Pg.630]    [Pg.630]    [Pg.636]    [Pg.638]    [Pg.639]    [Pg.665]    [Pg.182]    [Pg.8]    [Pg.40]    [Pg.664]    [Pg.135]    [Pg.63]    [Pg.125]    [Pg.22]    [Pg.316]   


SEARCH



Addition polymerization

Addition reverse

Addition reversible

Addition-fragmentation

Additional polymerization

Additives polymerization

Controlled radical polymerizations reversible addition fragmentation

Fragmentation additivity

Polymeric additives

Polymerization methods Reversible addition-fragmentation chain

Polymerization reversible addition-fragmentation-chain

Reverse addition-fragmentation chain transfer polymerization

Reverse additives

Reversible addition fragmentation chain transfer polymerization

Reversible addition fragmentation transfer RAFT) polymerization

Reversible addition fragmentation transfer polymerization

Reversible addition-fragment

Reversible addition-fragment polymerization

Reversible addition-fragment polymerization

Reversible addition-fragmentation

Reversible addition-fragmentation RAFT polymerization)

Reversible addition-fragmentation chain transfer RAFT) polymerization

Reversible addition-fragmentation chain transfer emulsion polymerization

Reversible addition-fragmentation chain transfer methacrylate polymerization

Reversible addition-fragmentation chain transfer miniemulsion polymerization

Reversible addition-fragmentation chain transfer radical polymerization

Reversible addition-fragmentation transfer RAFT) radical polymerization

Reversible polymerization

© 2024 chempedia.info