Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization mixing, control

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

In order to faciUtate heat transfer of the exothermic polymerization reaction, and to control polymerizate viscosity, percent reactives are adjusted through the use of inert aromatic or aUphatic diluents, such as toluene or heptane, or higher boiling mixed aromatic or mixed aUphatic diluents. Process feed streams are typically adjusted to 30—50% polymerizable monomers. [Pg.351]

Dicyclopentadiene is also polymerized with tungsten-based catalysts. Because the polymerization reaction produces heavily cross-Unked resins, the polymers are manufactured in a reaction injection mol ding (RIM) process, in which all catalyst components and resin modifiers are slurried in two batches of the monomer. The first batch contains the catalyst (a mixture of WCl and WOCl, nonylphenol, acetylacetone, additives, and fillers the second batch contains the co-catalyst (a combination of an alkyl aluminum compound and a Lewis base such as ether), antioxidants, and elastomeric fillers (qv) for better moldabihty (50). Mixing two Uquids in a mold results in a rapid polymerization reaction. Its rate is controlled by the ratio between the co-catalyst and the Lewis base. Depending on the catalyst composition, solidification time of the reaction mixture can vary from two seconds to an hour. Similar catalyst systems are used for polymerization of norbomene and for norbomene copolymerization with ethyhdenenorbomene. [Pg.431]

Epichlorohydrin Elastomers without AGE. Polymerization on a commercial scale is done as either a solution or slurry process at 40—130°C in an aromatic, ahphatic, or ether solvent. Typical solvents are toluene, benzene, heptane, and diethyl ether. Trialkylaluniinum-water and triaLkylaluminum—water—acetylacetone catalysts are employed. A cationic, coordination mechanism is proposed for chain propagation. The product is isolated by steam coagulation. Polymerization is done as a continuous process in which the solvent, catalyst, and monomer are fed to a back-mixed reactor. Pinal product composition of ECH—EO is determined by careful control of the unreacted, or background, monomer in the reactor. In the manufacture of copolymers, the relative reactivity ratios must be considered. The reactivity ratio of EO to ECH has been estimated to be approximately 7 (35—37). [Pg.555]

The main purpose of pesticide formulation is to manufacture a product that has optimum biological efficiency, is convenient to use, and minimizes environmental impacts. The active ingredients are mixed with solvents, adjuvants (boosters), and fillers as necessary to achieve the desired formulation. The types of formulations include wettable powders, soluble concentrates, emulsion concentrates, oil-in-water emulsions, suspension concentrates, suspoemulsions, water-dispersible granules, dry granules, and controlled release, in which the active ingredient is released into the environment from a polymeric carrier, binder, absorbent, or encapsulant at a slow and effective rate. The formulation steps may generate air emissions, liquid effluents, and solid wastes. [Pg.70]

Emulsion polymerization is the most important process for production of elastic polymers based on butadiene. Copolymers of butadiene with styrene and acrylonitrile have attained particular significance. Polymerized 2-chlorobutadiene is known as chloroprene rubber. Emulsion polymerization provides the advantage of running a low viscosity during the entire time of polymerization. Hence the temperature can easily be controlled. The polymerizate is formed as a latex similar to natural rubber latex. In this way the production of mixed lattices is relieved. The temperature of polymerization is usually 50°C. Low-temperature polymerization is carried out by the help of redox systems at a temperature of 5°C. This kind of polymerization leads to a higher amount of desired trans-1,4 structures instead of cis-1,4 structures. Chloroprene rubber from poly-2-chlorbutadiene is equally formed by emulsion polymerization. Chloroprene polymerizes considerably more rapidly than butadiene and isoprene. Especially in low-temperature polymerization emulsifiers must show good solubility and... [Pg.602]

The final conclusion of this short discussion is that electropolymerization is a fast method (a film of about 5 //mean be obtained by polarization in 1 rnin) that uses a complex mechanism (Fig. 12) in which electropolymerization, cross linking, degradation, and chemical polymerization can coexist to produce a mixed material with a cross-linked and electroactive part and a passive fraction.67-71 However, ifwe control the variables acting on the kinetics of the different simultaneous reactions, the complexity also provides flexibility, allowing us to obtain materials tailored for specific applications. [Pg.333]


See other pages where Polymerization mixing, control is mentioned: [Pg.151]    [Pg.162]    [Pg.97]    [Pg.210]    [Pg.1101]    [Pg.231]    [Pg.221]    [Pg.4321]    [Pg.705]    [Pg.988]    [Pg.301]    [Pg.168]    [Pg.47]    [Pg.48]    [Pg.307]    [Pg.316]    [Pg.328]    [Pg.328]    [Pg.329]    [Pg.65]    [Pg.97]    [Pg.329]    [Pg.373]    [Pg.267]    [Pg.364]    [Pg.228]    [Pg.521]    [Pg.464]    [Pg.320]    [Pg.183]    [Pg.474]    [Pg.490]    [Pg.520]    [Pg.557]    [Pg.1883]    [Pg.1063]    [Pg.116]    [Pg.706]    [Pg.718]    [Pg.197]    [Pg.493]    [Pg.118]    [Pg.173]    [Pg.168]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Controlled polymerization

Mixing control

© 2024 chempedia.info