Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium-based polymerization

Copolymerizations initiated by lithium metal should give the same product as produced from lithium alkyls. Usually the radical ends produced by electron transfer initiation have so short a lifetime they can have no influence on the copolymerization. This is true for instance in the copolymerization of isoprene and styrene (50). The product is identical if initiated by lithium metal or by butyllithium. With the styrene-methylmethacrylate system, however, differences are observed (79,80,82). Whereas the butyllithium initiated copolymer contains no styrene at low conversions, the one initiated by lithium metal has a high styrene content if the reaction is carried out in bulk and a moderate one even in tetrahydrofuran. These facts led O Driscoll and Tobolsky (80) to suggest that initiation with lithium occurs by electron exchange and that in this case the radical ends are sufficiently long-lived to produce simultaneous radical and anionic reactions at opposite ends of the chain. Only in certain rather exceptional circumstances would the free radical reaction be of importance. Some of the conditions required have been discussed by Tobolsky and Hartley (111). The anionic reaction should be slow. This is normally true for lithium based catalysts in hydrocarbon solvents. No evidence of appreciable radical participation is observed for initiation by sodium and potassium. The monomers should show a fast radical reaction. If styrene is replaced by isoprene, no isoprene is found in the copolymer for isoprene polymerizes slowly by free radical initiation. Most important of all, initiation should be slow to produce a low steady concentration of radical-anions. An initiator which produces an almost instantaneous and complete electron transfer to monomer produces a high radical concentration which will ensure their rapid mutual termination. [Pg.99]

Some information is available on other acrylates. N,N-disubstituted acrylamides form isotactic polymers with lithium alkyls in hydrocarbons (12). t-Butylacrylate forms crystallizable polymers with lithium-based catalysts in non-polar solvents (65) whereas the methyl, n-butyl, sec-butyl and isobutyl esters do not. Isopropylacrylate also gives isotactic polymer with lithium compounds in non-polar solvents (34). The inability of n-alkylacrylates to form crystallizable polymers may result from a requirement for a branched alkyl group for stereospecific polymerization. On the other hand lack of crystallizability cannot be taken as definite evidence of a lack of stereoregulating influence, as sometimes quite highly regular polymer fails to crystallize. The butyllithium-initiated polymers of methylmethacrylate for instance cannot be crystallized. The presence of a small amount of more random structure appears to inhibit the crystallization process1. [Pg.107]

Reed 332) has reported that reaction of ethylene oxide with the a,(a-dilithiumpoly-butadiene in predominantly hydrocarbon media (some residual ether from the dilithium initiator preparation was present) produced telechelic polybutadienes with hydroxyl functionalities (determined by infrared spectroscopy) of 2.0 + 0.1 in most cases. A recent report by Morton, et al.146) confirms the efficiency of the ethylene oxide termination reaction for a,ta-dilithiumpolyisoprene functionalities of 1.99, 1.92 and 2.0j were reported (determined by titration using Method B of ASTM method E222-66). It should be noted, however, that term of a, co-dilithium-polymers with ethylene oxide resulted in gel formation which required 1-4 days for completion. In general, epoxides are not polymerized by lithium bases 333,334), presumably because of the unreactivity of the strongly associated lithium alkoxides641 which are formed. With counter ions such as sodium or potassium, reaction of the polymeric anions with ethylene oxide will effect polymerization to form block copolymers (Eq. (80) 334 336>). [Pg.74]

This review is limited to the polymerization of hydrocaibon dienes and olefins by means of organolithium initiators. It is not intended to include activated olefins or dienes that can be polymerized by bases of far lower reactivity or that do not involve direct caibon-lithium bonding. [Pg.58]

In anionic polymerization of vinyl monomers (nondiene), low temperatures and polar solvents favor the preparation of syndiotactic polymers.21 Nonpolar solvents tend to favor isotactic polymerization. In the case of diene monomers such as butadiene and isoprene, the use of lithium based initiators in nonpolar... [Pg.633]

The discovery of the ability of lithium-based catalysts to polymerize isoprene to give a high cis 1,4 polyisoprene was rapidly followed by the development of alkyllithium-based polybutadiene. The first commercial plant was built by the Firestone Tire and Rubber Company in 1960. Within a few years the technology was expanded to butadiene-styrene copolymers, with commercial production under way toward the end of the 1960s. [Pg.702]

Cyclic oligomeric oxolanyl alkanes were used when diene polymerization utilized a lithium-based initiator. Cyclic oligomeric oxolanyl alkanes are described by Lin [1] and include 2-2 -di(tetrahydrofuryl) propane, dipiperidyl ethane, hexamethyl phosphoramide, N-N -dimethyl piperazine, and diazabicyclooctane. [Pg.476]

Potassium enolates of aldehydes, Enolates of aldehydes are somewhat difficult to generate because of competing polymerization by base. They have been obtained recently in high yield by use of potassium hydride in THF at 0° and successfully alkylated, sulfenylated with diphenyl disulfide, and converted into o-iodo aldehydes by iodine. The last two reactions have not been observed previously. Sulfenylation of aldehydes has previously used indirectly generated lithium enolates and a reactive sulfenyl chloride. All three reactions are useful, however, for aldehydes with only one a-proton. Otherwise yields of monosubstituted aldehydes are low and largely by-products are obtained. [Pg.198]

The diene monomers give predominantly 1,4-polymers in hydrocarbon solvents if polymerized using lithium-based initiation. Isoprene, under these conditions, gives a predominantly cis-1,4 polymer but with butadiene the proportions of cis- and frans-1,4 are fairly evenly distributed. Once ain this phenomenon is characteristic of lithium compounds sodium- and potassium-based initiation gives mixed structures even in hydrocarbon solvents. Polymerization in polar solvents such as tetrahydrofuran leads to largely 3,4-polyisoprene or 1,2-butadiene with... [Pg.48]

Ethylene Oxide Polymerization. The apparent inability of lithium bases to effect the anionic polymerization of ethylene oxide and Its homologues Is unique among the alkali metals. At least part of the unreactlvlty of lithium alkoxldes can be ascribed to their strong association In solution as shown In Table 1(18). However, It can be seen that the corresponding sodium and potassium alkoxldes are also highly associated In solution and yet they are active Initiators for the polymerization of ethylene oxide. [Pg.39]

Stellbrink, J., Allgaier, J., Willner, L., et al., 2002. Real time SANS study on head group self-assembly for lithium based anionic polymerizations. Polymer 43 (25), 7101-7109. [Pg.111]

SOLUTION POLYMERIZATION Solution SBR typically made in hydrocarbon solution with alkyl lithium-based inihator. In this stereo-specific catalyst system, in principle, every polymer molecule remains live until a deactivator or some other agent capable of reacting with the anion intervenes. Able to control molecular weight, molecular weight distribution, and branching. Able to make random and block copolymers with designed chain sequence. Able to make copolymer with controlled styrene content. Able to control the butadiene structure of vinyl/ ds/ trans. Higher purity due to no addition of soap. [Pg.984]

Block copolymers with known block lengths were prepared by Bostick (1970) using organocyclosiloxanes with lithium-based catalysts. For example, when hexamethylcyclotrisiloxane is reacted with the lithium salt of diphenyl-siloxane diol, a multistep addition polymerization occurs ... [Pg.204]

Polymeric electrolytes based on ABS/PMMA blends, aiming at lithium battery applications, were studied for the effect of addition of plasticizer (mixture 1 1 of ethylene carbonate and propylene carbonate). Figure 10.30 shows that ionic conductivity increases with increased amount of plasticizer in formulation. In these apphcations, plasticizers are frequently used for two reasons ... [Pg.215]

Polar modifiers are most often employed to control the level of vinyl structures formed during living lithium-based anionic polymerization processes in nonpolar solvents. Relatively small amoimts of added polar modifier, based on the... [Pg.879]

This is exemplified well in the case of the polymerization of isoprene in hydrocarbon solvents with lithium-based initiators. The newly formed active chain end has a cis structure, and at low concentration of chain end where propagation is rapid compared to isomerization a very high cis 1,4 polymer is formed. However at high concentrations of chain end or low monomer concentrations the isomerization to the preferred trans configuration is more rapid than propagation and appreciable trans 1,4 structures are incorporated. [Pg.39]

In particular, the question of association in lithium-based polymerization in nonpolar solvents, one of the most important industrial systems, and the determination of the kinetic scheme and parameters, are still under debate. In general, the association behavior is formulated as in Eq. (9), where n gives the association number, which generally is between 2 and 6, depending on the structure of P (monomer or initiator), solvent, and temperature (see Table 7.4). [Pg.327]

TMED, (CH3)2NCH2CH2N(CH3)2. B.p. 122 C a hygroscopic base which forms a hydrocarbon-soluble stable chelate with lithium ions and promotes enhanced reactivity of compounds of lithium, e.g. LiAlH4, UC4H9, due to enhanced kinetic basicity of the chelate. Used in polymerization catalysts, tetramethyl lead, TML 5 lead tetramethyl. [Pg.391]

Technora. In 1985, Teijin Ltd. introduced Technora fiber, previously known as HM-50, into the high performance fiber market. Technora is based on the 1 1 copolyterephthalamide of 3,4 -diaminodiphenyl ether and/ -phenylenediamine (8). Technora is a whoUy aromatic copolyamide of PPT, modified with a crankshaft-shaped comonomer, which results in the formation of isotropic solutions that then become anisotropic during the shear alignment during spinning. The polymer is synthesized by the low temperature polymerization of/ -phenylenediamine, 3,4 -diaminophenyl ether, and terephthaloyl chloride in an amide solvent containing a small amount of an alkaU salt. Calcium chloride or lithium chloride is used as the alkaU salt. The solvents used are hexamethylphosphoramide (HMPA), A/-methyl-2-pyrrohdinone (NMP), and dimethyl acetamide (DMAc). The stmcture of Technora is as follows ... [Pg.66]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]


See other pages where Lithium-based polymerization is mentioned: [Pg.64]    [Pg.225]    [Pg.48]    [Pg.208]    [Pg.264]    [Pg.71]    [Pg.95]    [Pg.238]    [Pg.467]    [Pg.22]    [Pg.49]    [Pg.55]    [Pg.77]    [Pg.135]    [Pg.2875]    [Pg.38]    [Pg.74]    [Pg.330]    [Pg.124]    [Pg.263]    [Pg.1052]    [Pg.133]    [Pg.331]    [Pg.104]    [Pg.404]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Epoxides lithium bases polymerized

Polymeric bases

© 2024 chempedia.info