Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization and chain transfer

Table 1. Polymerization and Chain-Transfer Constants for Various Monomers ... Table 1. Polymerization and Chain-Transfer Constants for Various Monomers ...
According to control experiments, initiation by H20 is quite significant in St polymerization and chain transfer cannot be eliminated by increasing [ED]s (see Sect. 4.2.2.1). [Pg.96]

In the next three sections we consider initiation, termination, and propagation steps in the free-radical mechanism for addition polymerization. One should bear in mind that two additional steps, inhibition and chain transfer, are being ignored at this point. We shall take up these latter topics in Sec. 6.8. [Pg.349]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

Basic Components. The principal components in emulsion polymerization are deionized water, monomer, initiator, emulsifier, buffer, and chain-transfer agent. A typical formula consists of 20—60% monomer, 2—10 wt % emulsifier on monomer, 0.1—1.0 wt % initiator on monomer, 0.1—1.0 wt % chain-transfer agent on monomer, various small amounts of buffers and bacteria control agents, and the balance deionized water. [Pg.24]

A typical recipe for batch emulsion polymerization is shown in Table 13. A reaction time of 7—8 h at 30°C is requited for 95—98% conversion. A latex is produced with an average particle diameter of 100—150 nm. Other modifying ingredients may be present, eg, other colloidal protective agents such as gelatin or carboxymethylcellulose, initiator activators such as redox types, chelates, plasticizers, stabilizers, and chain-transfer agents. [Pg.439]

End Groups and Branching. Both saturated and unsaturated end groups can be formed during polymerization by chain transfer to monomer or polymer and by disproportionation. Some of the possible chain end groups are... [Pg.500]

Through a study of the influence of thiophene and other aromatic compounds on the retardation and chain transfer on the polymerization of styrene by stannic chloride, the relative rates of attack of a carbonium-ion pair could be obtained. It was found that thiophene in this reaction was about 100 times more reactive than p-xylene and somewhat less reactive than anisole. ... [Pg.45]

In the presence of radical initiators such as benzoyl peroxide (BPO), azobisisobutyronitrile (AIBN), persulfates (S208 ), etc., grafting of vinyl monomers onto polymeric backbones involves generation of free radical sites by hydrogen abstraction and chain transfer processes as described below ... [Pg.483]

The trapped radicals, most of which are presumably polymeric species, have been used to initiate graft copolymerization [127,128]. For this purpose, the irradiated polymer is brought into contact with a monomer that can diffuse into the polymer and thus reach the trapped radical sites. This reaction is assumed to lead almost exclusively to graft copolymer and to very little homopolymer since it can be conducted at low temperature, thus minimizing thermal initiation and chain transfer processes. Moreover, low-molecular weight radicals, which would initiate homopolymerization, are not expected to remain trapped at ordinary temperatures. Accordingly, irradiation at low temperatures increases the grafting yield [129]. [Pg.495]

With the omission of the reinitiation reaction, this scheme is the same as that for polymerization with chain transfer and an expression (eq 28) for the degree of polymerization similar in form to the Mayo equation can be derived. [Pg.267]

Thiol-ene polymerization was first reported in 1938.220 In this process, a polymer chain is built up by a sequence of thiyl radical addition and chain transfer steps (Scheme 7.17). The thiol-ene process is unique amongst radical polymerizations in that, while it is a radical chain process, the rate of molecular weight increase is more typical of a step-growth polymerization. Polymers ideally consist of alternating residues derived from the diene and the dithiol. However, when dienes with high kp and relatively low A-, monomers (e.g. acrylates) are used, short sequences of units derived from the diene are sometimes formed. [Pg.378]

Minor (by amount) functionality is introduced into polymers as a consequence of the initiation, termination and chain transfer processes (Chapters 3, 5 and 6 respectively). These groups may either be at the chain ends (as a result of initiation, disproportionation, or chain transfer,) or they may be part of the backbone (as a consequence of termination by combination or the copolymerization of byproducts or impurities). In Section 8.2 wc consider three polymers (PS, PMMA and PVC) and discuss the types of defect structure that may be present, their origin and influence on polymer properties, and the prospects for controlling these properties through appropriate selection of polymerization conditions. [Pg.413]

Thus with aMeSt, the kinetic chain is relatively short, monomer is consumed mainly by initiation and propagation, and chain transfer by the HSiCCHj CH H C Q initiator is unfavorable (see Sect. III.B.3.b.i.). In contrast, with isobutylene the kinetic chain may live longer because it is sustained by thermodynamically favorable chain transfer by the initiator. Scheme 5 illustrates the mechanism of isobutylene polymerization by the HSi(CH3)2CH2CH29>CH2Cl/Me3Al system. The kinetic chain is sustained by chain transfer loops shown on the left margin of the Scheme. [Pg.41]

HSi(CH3)2CH2CH29)CH2Cl/Me3Al system is strong evidence for molecular weight control by termination, i.e., for polymerization without chain transfer to monomer. The proposition is further substantiated by results of model experiments of Kennedy et al.26 and H1 NMR analysis of HSi-PEB to be discussed in Sect. IH.B.4.C. [Pg.42]

Lipases have also been used as initiators for the polymerization of lactones such as /3-bu tyro lac tone, <5-valerolactone, e-caprolactone, and macrolides.341,352-357 In this case, the key step is the reaction of lactone with die serine residue at the catalytically active site to form an acyl-enzyme hydroxy-terminated activated intermediate. This intermediate then reacts with the terminal hydroxyl group of a n-mer chain to produce an (n + i)-mer.325,355,358,359 Enzymatic lactone polymerization follows a conventional Michaelis-Menten enzymatic kinetics353 and presents a controlled character, without termination and chain transfer,355 although more or less controlled factors, such as water content of the enzyme, may affect polymerization rate and the nature of endgroups.360... [Pg.84]

The first unequivocal proof of feasibility of homogeneous polymerization free of termination and chain-transfer was reported in 1956, and the concept of living polymers and its ramifications were fully developed in those publications 2). Although the initial work dealt with anionic polymerization of styrene and the dienes, the underlying ideas were soon applied by other workers to a great variety of polymeric systems, as shown by the brief review of some of those developed recently. [Pg.89]

The theory of radiation-induced grafting has received extensive treatment [21,131,132]. The typical steps involved in free-radical polymerization are also applicable to graft polymerization including initiation, propagation, and chain transfer [133]. However, the complicating role of diffusion prevents any simple correlation of individual rate constants to the overall reaction rates. Changes in temperamre, for example, increase the rate of monomer diffusion and monomer... [Pg.868]

Transfer constants for polystyrene chain radicals at 60° and 100°C, obtained from the slopes of these plots and others like them, are given in the second and third columns of Table XIII. Almost any solvent is susceptible to attack by the propagating free radical. Even cyclohexane and benzene enter into chain transfer, although to a comparatively small extent only. The specific reaction rate at 100°C for transfer with either of these solvents is less than two ten-thousandths of the rate for the addition of the chain radical to styrene monomer. A fifteenfold dilution with benzene was required to halve the molecular weight, i.e., to double l/xn from its value (l/ rjo for pure styrene (see Fig. 16). Other hydrocarbons are more effective in lowering the degree of polymerization through chain transfer. [Pg.142]


See other pages where Polymerization and chain transfer is mentioned: [Pg.211]    [Pg.571]    [Pg.102]    [Pg.4553]    [Pg.196]    [Pg.211]    [Pg.571]    [Pg.102]    [Pg.4553]    [Pg.196]    [Pg.167]    [Pg.379]    [Pg.386]    [Pg.236]    [Pg.352]    [Pg.516]    [Pg.5]    [Pg.429]    [Pg.508]    [Pg.747]    [Pg.103]    [Pg.298]    [Pg.609]    [Pg.5]    [Pg.141]    [Pg.142]    [Pg.89]    [Pg.98]    [Pg.331]    [Pg.4]    [Pg.855]    [Pg.209]    [Pg.148]   
See also in sourсe #XX -- [ Pg.506 ]




SEARCH



Chain polymerization and

© 2024 chempedia.info