Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer support matrix

The method of catalyst preparation (especially in the case of alloys) and the catalyst interaction with the polymer support matrix play important roles in determining the resultant electrocatalytic effect. The catalyst/support couple PtSn/PAni (0.5 pm thickness) with PtSn synthesized by electroreduction at 0.1 V vs. RHE was found to be an effective catalytic system for formic acid oxidation, lowering the anode potential by over 100 mV compared to pure Pt/PAni and PtRu/PAni [324]. Moreover, the oxidation of formic acid on PtSn/PAni commences at low potentials, in the hydrogen adsorption region, around 0.1-0.2 V vs. RHE. [Pg.265]

Polymer-based, synthetic ion-exchangers known as resins are available commercially in gel type or truly porous forms. Gel-type resins are not porous in the usual sense of the word, since their structure depends upon swelhng in the solvent in which they are immersed. Removal of the solvent usually results in a collapse of the three-dimensional structure, and no significant surface area or pore diameter can be defined by the ordinaiy techniques available for truly porous materials. In their swollen state, gel-type resins approximate a true molecular-scale solution. Thus, we can identify an internal porosity p only in terms of the equilibrium uptake of water or other liquid. When crosslinked polymers are used as the support matrix, the internal porosity so defined varies in inverse proportion to the degree of crosslinkiug, with swelhng and therefore porosity typically being more... [Pg.1500]

Under certain condition, however, reactions are still preferably conducted in solution. This is the case e.g., for heterogeneous reactions and for conversions, which deliver complex product mixtures. In the latter case, further conversion of this mixture on the solid support is not desirable. In these instances, the combination of solution chemistry with polymer-assisted conversions can be an advantageous solution. Polymer-assisted synthesis in solution employs the polymer matrix either as a scavenger or for polymeric reagents. In both cases the virtues of solution phase and solid supported chemistry are ideally combined allowing for the preparation of pure products by filtration of the reactive resin. If several reactive polymers are used sequentially, multi-step syntheses can be conducted in a polymer-supported manner in solution as well. As a further advantage, many reactive polymers can be recycled for multiple use. [Pg.382]

The second general method, IMPR, for the preparation of polymer supported metal catalysts is much less popular. In spite of this, microencapsulation of palladium in a polyurea matrix, generated by interfacial polymerization of isocyanate oligomers in the presence of palladium acetate [128], proved to be very effective in the production of the EnCat catalysts (Scheme 3). In this case, the formation of the polymer matrix implies only hydrolysis-condensation processes, and is therefore much more compatible with the presence of a transition metal compound. That is why palladium(II) survives the microencapsulation reaction... [Pg.216]

The conversion of isothiocyanates to isonitriles under microwave conditions has been studied by Ley and Taylor using a polymer-supported [l,3,2]oxaphospholidine [119]. The use of 3-methyl-2-phenyl-[l,3,2]oxaphospholidine in solution is less favored [120] due to the associated toxicity and instability of the phosphorus-derived reagent, as well as the need to isolate the products from a complex reaction mixture by vacuum distillation. This drawback has been resolved by attaching the active [l,3,2]oxaphospholidine to a polymer matrix. [Pg.364]

The first CL sensor for oxygen analysis was reported by Freeman and Seitz in 1978 [6], Collins and Ross-Pehrsson [12] investigated the effect of polymer type, pH, and metal catalyst incorporated within the film. Oxygen levels as low as 2.4 ppm in nitrogen have been detected using the oligomer fluoropolyol as the support matrix for immobilizing luminol, KOH, and the metal catalyst Fe2(S04)3. A sensor... [Pg.571]

Photo/Thermal Reactions. The fifth basic class of photopolymer chemistry that can be used in commercial applications is based more on physical changes in a polymer-based matrix than on chemical reactions. A recent application of this technology is the laser ablation (77) of an organic coating on a flat support to directly produce a printing plate. The availability of newer high energy lasers will allow more applications to be based on the photo/thermal mechanism. [Pg.5]

All OFDs reported in the literature suffer from spectral interferences, long response times, and narrow dynamic responses. Many of these obstacles exist as a result of limitations due to the properties of UY/visible fluorescent dyes. These dyes typically absorb and fluoresce between 300 and 650 nm, a region susceptible to extensive interference, especially from biomolecules (Figure 7.1). The fluorescence of sample impurities combined with the inner effect of the matrix and polymer support greatly increase the signal interference of the analysis. [Pg.185]

Zeolite/polymer mixed-matrix membranes can be fabricated into dense film, asymmetric flat sheet, or asymmetric hollow fiber. Similar to commercial polymer membranes, mixed-matrix membranes need to have an asymmetric membrane geometry with a thin selective skin layer on a porous support layer to be commercially viable. The skin layer should be made from a zeohte/polymer mixed-matrix material to provide the membrane high selectivity, but the non-selective porous support layer can be made from the zeohte/polymer mixed-matrix material, a pure polymer membrane material, or an inorganic membrane material. [Pg.341]

Geong and coworkers reported a new concept for the formation of zeolite/ polymer mixed-matrix reverse osmosis (RO) membranes by interfacial polymerization of mixed-matrix thin films in situ on porous polysulfone (PSF) supports [83]. The mixed-matrix films comprise NaA zeoHte nanoparticles dispersed within 50-200 nm polyamide films. It was found that the surface of the mixed-matrix films was smoother, more hydrophilic and more negatively charged than the surface of the neat polyamide RO membranes. These NaA/polyamide mixed-matrix membranes were tested for a water desalination application. It was demonstrated that the pure water permeability of the mixed-matrix membranes at the highest nanoparticle loadings was nearly doubled over that of the polyamide membranes with equivalent solute rejections. The authors also proved that the micropores of the NaA zeolites played an active role in water permeation and solute rejection. [Pg.346]

The use of polymeric coatings in catalysis is mainly restricted to the physical and sometimes chemical immobilization of molecular catalysts into the bulk polymer [166, 167]. The catalytic efficiency is often impaired by the local reorganization of polymer attached catalytic sites or the swelling/shrinking of the entire polymer matrix. This results in problems of restricted mass transport and consequently low efficiency of the polymer-supported catalysts. An alternative could be a defined polymer coating on a solid substrate with equally accessible catalytic sites attached to the polymer (side chain) and uniform behavior of the polymer layer upon changes in the environment, such as polymer brushes. [Pg.399]

Chromatographic resolution is also dependent on column efficiency (i). Column efficiency is directly dependent on the nature of the support matrix and how well that support is packed in its column. Available chromatographic supports are based on dextran, agarose, polystyrene, acrylic, cellulose, silica gel and a variety of other polymers. Althou cellulosic supports are manufactured in both microcrystalline and leaded forms, most supports are beaded. Newer supports may use hybrid bead construction where the base support is coated with a second materid (e.g., dextran or silica coated with agarose). [Pg.173]

The affinity of the polymer-bound catalyst for water and for organic solvent also depends upon the structure of the polymer backbone. Polystyrene is nonpolar and attracts good organic solvents, but without ionic, polyether, or other polar sites, it is completely inactive for catalysis of nucleophilic reactions. The polar sites are necessary to attract reactive anions. If the polymer is hydrophilic, as a dextran, its surface must be made less polar by functionalization with lipophilic groups to permit catalytic activity for most nucleophilic displacement reactions. The % RS and the chemical nature of the polymer backbone affect the hydrophilic/lipophilic balance. The polymer must be able to attract both the reactive anion and the organic substrate into its matrix to catalyze reactions between the two mutually insoluble species. Most polymer-supported phase transfer catalysts are used under conditions where both intrinsic reactivity and intraparticle diffusion affect the observed rates of reaction. The structural variables in the catalyst which control the hydrophilic/lipophilic balance affect both activity and diffusion, and it is often not possible to distinguish clearly between these rate limiting phenomena by variation of active site structure, polymer backbone structure, or % RS. [Pg.57]

Polystyrene and its divinylbenzene cross-linked copolymer have been most widely exploited as the polymer support for anchoring metal complexes. A large variety of ligands containing N, P or S have been anchored on the polystyrene-divinylbenzene matrix either by the bromination-lithiation pathway or by direct interaction of the ligand with C1-, Br- or CN-methylated polystyrene-divinyl-benzene network [14] (Fig. 7). [Pg.95]


See other pages where Polymer support matrix is mentioned: [Pg.401]    [Pg.1278]    [Pg.107]    [Pg.1944]    [Pg.1206]    [Pg.401]    [Pg.1278]    [Pg.107]    [Pg.1944]    [Pg.1206]    [Pg.74]    [Pg.11]    [Pg.143]    [Pg.5]    [Pg.337]    [Pg.417]    [Pg.181]    [Pg.16]    [Pg.71]    [Pg.101]    [Pg.343]    [Pg.345]    [Pg.32]    [Pg.55]    [Pg.59]    [Pg.110]    [Pg.264]    [Pg.770]    [Pg.583]    [Pg.6]    [Pg.263]    [Pg.49]    [Pg.54]    [Pg.71]    [Pg.90]    [Pg.263]    [Pg.263]    [Pg.64]    [Pg.602]   
See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.954 , Pg.955 ]




SEARCH



Polymer matrices

© 2024 chempedia.info