Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer processing EPDM

As a result of its saturated polymer backbone, EPDM is more resistant to oxygen, ozone, UV and heat than the low-cost commodity polydiene rubbers, such as natural rubber (NR), polybutadiene rubber (BR) and styrene-butadiene rubber (SBR). Therefore, the main use of EPD(M) is in outdoor applications, such as automotive sealing systems, window seals and roof sheeting, and in under-the-hood applications, such as coolant hoses. The main drawback of EPDM is its poor resistance to swelling in apolar fluids such as oil, making it inferior to high-performance elastomers, such as fluoro, acrylate and silicone elastomers in that respect. Over the last decade thermoplastic vulcanisates, produced via dynamic vulcanisation of blends of polypropylene (PP) and EPDM, have been commercialised, combining thermoplastic processability with rubber elasticity [8, 9]. [Pg.208]

Uses AntioxidanL stabilizer for PP film, PE, polyamides, polyesters, POM, PU, PVC, PS, cellulosics, mbbers, EPDM, adhesives, fiber applic., talc, food-grade polymers processing and end-use applic. in food-pkg. adhesives... [Pg.1404]

Uses Processing aid, dispersant, flow aid for polymers, esp. EPDM Features Nonstaining nondisooloring improves mold flow and extrusion chars. ... [Pg.886]

EPDM-Derived Ionomers. Another type of ionomer containing sulfonate, as opposed to carboxyl anions, has been obtained by sulfonating ethylene—propjlene—diene (EPDM) mbbers (59,60). Due to the strength of the cross-link, these polymers are not inherently melt-processible, but the addition of other metal salts such as zinc stearate introduces thermoplastic behavior (61,62). These interesting polymers are classified as thermoplastic elastomers (see ELASTOLffiRS,SYNTHETIC-THERMOPLASTICELASTOLffiRS). [Pg.409]

EPR and EPDM have been made by either solution or emulsion polymerization processes. More recently a new process involving gas-phase polymerization and metallocene catalysts promises to capture large shares of these markets. These new polymers will be especially attractive in automotive apphcations and wine and cable where theh favorable pricing should be welcome. [Pg.232]

When 4-(mercaptoacetamido)diphenylamine [60766-26-9] (39) is added to EPDM mbber and mixed in a torque rheometer for 15 minutes at 150°C, 87% of it chemically binds to the elastomer (24). The mechanical and thermal stress placed on the polymer during mixing mptures the polymer chain, producing radicals that initiate the grafting process. [Pg.233]

EPM and EPDM mbbers are produced in continuous processes. Most widely used are solution processes, in which the polymer produced is in the dissolved state in a hydrocarbon solvent (eg, hexane). These processes can be grouped into those in which the reactor is completely filled with the Hquid phase, and those in which the reactor contents consist pardy of gas and pardy of a Hquid phase. In the first case the heat of reaction, ca 2500 kJ (598 kcal)/kg EPDM, is removed by means of cooling systems, either external cooling of the reactor wall or deep-cooling of the reactor feed. In the second case the evaporation heat from unreacted monomers also removes most of the heat of reaction. In other processes using Hquid propylene as a dispersing agent, the polymer is present in the reactor as a suspension. In this case the heat of polymerisation is removed mainly by monomer evaporation. [Pg.503]

Similar blends have been made by cross-linking the E-plastomer with peroxides. This process suffers from an inherent degradation of the iPP by peroxide. In a representative formulation, a mixture of 60 parts of E-plastomer (octene commoner), 15 parts maleated (0.6%) iPP, 25 parts of EPDM, 10 parts of paraffinic plasticizer, 5 parts of dicumyl peroxide, and 1 part of stabilizer was treated at 170°C for 5 min to give a cross-linked blend with Shore A hardness 66, tensile strength 5.5 MPa, and elongation 190%. Similar blends have been made with the incorporation of a limited amount of a SEES polymer to act as a compatibilizer between the E-plastomer and the iPP. [Pg.177]

Abraham et al. were the first ones to propose saturating commercially available microporous polyolefin separators (e.g., Celgard) with a solution of lithium salt in a photopolymerizable monomer and a nonvolatile electrolyte solvent. The resulting batteries exhibited a low discharge rate capability due to the significant occlusion of the pores with the polymer binder and the low ionic conductivity of this plasticized electrolyte system. Dasgupta and Ja-cobs patented several variants of the process for the fabrication of bonded-electrode lithium-ion batteries, in which a microporous separator and electrode were coated with a liquid electrolyte solution, such as ethylene—propylenediene (EPDM) copolymer, and then bonded under elevated temperature and pressure conditions. This method required that the whole cell assembling process be carried out under scrupulously anhydrous conditions, which made it very difficult and expensive. [Pg.203]

Sulfonated EPDMs are formulated to form a number of rubbery products including adhesives for footwear, garden hoses, and in the formation of calendered sheets. Perfluori-nated ionomers marketed as Nation (DuPont) are used for membrane applications including chemical-processing separations, spent-acid regeneration, electrochemical fuel cells, ion-selective separations, electrodialysis, and in the production of chlorine. It is also employed as a solid -state catalyst in chemical synthesis and processing. lonomers are also used in blends with other polymers. [Pg.229]

Peroxide crosslinking of the copolymer is more efficient than that of the homopolymer (Table 9-1). The process becomes a chain reaction (but with short kinetic chain length) involving polymerization of the pendant vinyl groups on the polysiloxane chains in combination with coupling of polymeric radicals. The crosslinking of EPDM rubbers is similarly more efficient when compared to EPM rubbers since the former contain double bonds in the polymer chain. [Pg.743]

The migration of clay from EPDM to CR phase can also be explained as a wetting/dewetting process between polymers and filler. Hereby, the driving force of filler particle migration is the difference of the interfacial tensions between the rubbers and clay ... [Pg.139]

Influences of the different methacrylates and 1,2-polybutadiene as coagents on the mechanical and rheological properties of the peroxide-cured PP/EPDM TPVs were reported by Rishi and Noordermeer [39, 40]. They interpreted the results in terms of solubility parameter and cure kinetics. The effects of coagents on both processing and properties of the compound depend on the nature of the polymer, type of peroxide, and other compounding ingredients. Among the methacrylate... [Pg.227]


See other pages where Polymer processing EPDM is mentioned: [Pg.4594]    [Pg.2076]    [Pg.102]    [Pg.1047]    [Pg.311]    [Pg.184]    [Pg.49]    [Pg.502]    [Pg.12]    [Pg.20]    [Pg.303]    [Pg.110]    [Pg.441]    [Pg.449]    [Pg.595]    [Pg.112]    [Pg.187]    [Pg.349]    [Pg.376]    [Pg.404]    [Pg.464]    [Pg.483]    [Pg.569]    [Pg.269]    [Pg.81]    [Pg.273]    [Pg.777]    [Pg.86]    [Pg.343]    [Pg.109]    [Pg.28]    [Pg.96]    [Pg.136]    [Pg.220]    [Pg.241]    [Pg.243]    [Pg.251]   
See also in sourсe #XX -- [ Pg.882 , Pg.884 ]




SEARCH



EPDM

© 2024 chempedia.info