Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer mechanical property test

External factors that will influence polymer mechanical properties are temperature or thermal treatment, temperature history, large differences in pressure, and environmental factors such as humidity, solar radiation, or other types of radiation. The mechanical properties of polymer are also sensitive to the methods and variables used for testing, such as strain deformation as well as the rate at which the strain is performed. Finally, the mechanical behavior of polymeric materials and the values of their mechanical properties will be sensitive to the kind of strain that is imposed by the applied force, namely, tension, compression, biaxial, or shear. [Pg.427]

This article covers the use of acoustics as a molecular probe of polymer structure and describes various acoustic applications of polymers. Enough theory and experimental details are given to make the presentation understandable, but the emphasis is on the experimental results for polymers. Most of the presentation is for small-amplitude waves in solid polymers. References to some speciaUzed topics are given (see also Mechanical properties Test Methods). [Pg.43]

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

It has been hypothesized that cross-linked polymers would have better mechanical properties if interchain bridges were located at the ends rather than the center of chains. To test this, low molecular weight polyesters were synthesizedf... [Pg.302]

Mechanical properties of plastics can be determined by short, single-point quaUty control tests and longer, generally multipoint or multiple condition procedures that relate to fundamental polymer properties. Single-point tests iaclude tensile, compressive, flexural, shear, and impact properties of plastics creep, heat aging, creep mpture, and environmental stress-crackiag tests usually result ia multipoint curves or tables for comparison of the original response to post-exposure response. [Pg.153]

In summary, then, design with polymers requires special attention to time-dependent effects, large elastic deformation and the effects of temperature, even close to room temperature. Room temperature data for the generic polymers are presented in Table 21.5. As emphasised already, they are approximate, suitable only for the first step of the design project. For the next step you should consult books (see Further reading), and when the choice has narrowed to one or a few candidates, data for them should be sought from manufacturers data sheets, or from your own tests. Many polymers contain additives - plasticisers, fillers, colourants - which change the mechanical properties. Manufacturers will identify the polymers they sell, but will rarely disclose their... [Pg.226]

The mechanical properties of polystyrene depend to some extent on the nature of the polymer (e.g. its molecular weight), on the method of preparing the sample for testing and on the method of test, as is the case with all plastics materials. [Pg.434]

We have recently been exploring this technique to evaluate the adhesive and mechanical properties of compliant polymers in the form of a nanoscale JKR test. The force and stiffness data from a force-displacement curve can be plotted simultaneously (Fig. 13). For these contacts, the stiffness response appears to follow the true contact stiffness, and the curve was fit (see [70]) to a JKR model. Both the surface energy and modulus can be determined from the curve. Using JKR analyses, the maximum pull off force, surface energy and tip radius are... [Pg.210]

The present review shows how the microhardness technique can be used to elucidate the dependence of a variety of local deformational processes upon polymer texture and morphology. Microhardness is a rather elusive quantity, that is really a combination of other mechanical properties. It is most suitably defined in terms of the pyramid indentation test. Hardness is primarily taken as a measure of the irreversible deformation mechanisms which characterize a polymeric material, though it also involves elastic and time dependent effects which depend on microstructural details. In isotropic lamellar polymers a hardness depression from ideal values, due to the finite crystal thickness, occurs. The interlamellar non-crystalline layer introduces an additional weak component which contributes further to a lowering of the hardness value. Annealing effects and chemical etching are shown to produce, on the contrary, a significant hardening of the material. The prevalent mechanisms for plastic deformation are proposed. Anisotropy behaviour for several oriented materials is critically discussed. [Pg.117]

Determination of die mechanical properties of a cured polymer serves to characterize its macroscopic (bulk) features such as flexibility and hardness. Using standardized methods of the American Society for Testing and Materials (ASTM) and die International Standards Organization (ISO) allows direct comparison to otiier materials. The vast majority of polyurethane research and development is conducted in industry where mechanical properties are of vital importance because tins information is used to design, evaluate, and market products. General test categories are presented here with a few illustrative examples. [Pg.242]

There are two further related sets of tests that can be used to give information on the mechanical properties of viscoelastic polymers, namely creep and stress relaxation. In a creep test, a constant load is applied to the specimen and the elongation is measured as a function of time. In a stress relaxation test, the specimen is strained quickly to a fixed amount and the stress needed to maintain this strain is also measured as a function of time. [Pg.104]


See other pages where Polymer mechanical property test is mentioned: [Pg.100]    [Pg.471]    [Pg.126]    [Pg.162]    [Pg.334]    [Pg.107]    [Pg.118]    [Pg.60]    [Pg.42]    [Pg.302]    [Pg.397]    [Pg.52]    [Pg.5]    [Pg.169]    [Pg.180]    [Pg.506]    [Pg.270]    [Pg.243]    [Pg.329]    [Pg.153]    [Pg.154]    [Pg.154]    [Pg.6]    [Pg.217]    [Pg.684]    [Pg.139]    [Pg.285]    [Pg.715]    [Pg.241]    [Pg.263]    [Pg.36]    [Pg.107]    [Pg.115]    [Pg.248]    [Pg.171]    [Pg.204]    [Pg.230]    [Pg.236]    [Pg.657]    [Pg.1061]   
See also in sourсe #XX -- [ Pg.34 , Pg.35 ]




SEARCH



Mechanical properties tests

Mechanical testing

Mechanical tests

Polymer mechanical

Polymer mechanism

© 2024 chempedia.info